
The UUDeview Decoding Library

Frank Pilhofer

June 7, 2001

Abstract

The UUDeview library is a highly portable set of functions that provide facilities for decoding uuen-
coded, xxencoded, Base64 and BinHex-Encoded files as well as for encoding binary files into all of these
representations except BinHex. This document describes how the features of encoding and decoding can
be integrated into your own applications.

The information is intended for developers only, and is not required reading material for end users.
It is assumed that the reader is familiar with the general issue of encoding and decoding and has some
experience with the “C” programming language.

This document describes version 0.5, patchlevel 15 of the library.

1 Introduction

1.1 Background

The Internet provides us with a fast and reliable means of user-to-user message delivery, using private
email or newsgroups. Both systems have originally been designed to transport plain-text messages. Over
the years, some methods appeared allowing transport of arbitrary binary data by “encoding” the data into
plain-text messages. But after these years, there are still certain problems handling the encoded data, and
many recipients have difficulties decoding the messages back into their original form.

It should be the job of the mail delivery agent to handle sending and rend receiving binary data transpar-
ently. However, the support of most applications is limited, and several incompatibilities among different
software exists.

There are three common formats for encoding binary data, called uuencoding, Base64 and BinHex.
Issues are further complicated by slight variations of the formats, the packaging, and some broken imple-
mentations.

Further problems arise with multi-part postings, where the encoding of a huge file has been split up into
several individual messages to ensure proper transfer over gateways with limited message sizes. Very few
software is able to properly sort and decode the parts. Even nowadays, many users are at a loss to decode
these kinds of messages.

This is where the UUDeview Decoding Library steps in.

1.2 The Library

The UUDeview library makes an attempt at decoding nearly all kinds of encoded files. It is supposed to
decode multi-part files as well as many files simultaneously. Part numbers are evaluated, thus making it
possible to re-arrange parts that aren’t in their correct order.

No assumptions are made on the format of the input file. Usually the input will be an email folder or
newsgroup messages. If this is the case, the information found in header lines is evaluated; but plain en-
coded files with no surrounding information are also accepted. The input may also consist of concatenated
parts and files.

Decoding files is done in two passes. During the first pass, all input files are scanned. Information is
gathered about each chunk of encoded data. Besides the obvious data about type, position and size of the
chunk, some environmental information from the envelope of a mail message is also gathered if available.

1

UUDeview

Application OS
Services Interface

Application
Language Interface

Application

Operating System

Decoding Library

Figure 1: Integration of the Library

If the scanner finds a properly MIME-formatted message, a proper MIME parser steps into action.
Because MIME messages include precise information about the message’s contents, there is seldom doubt
about its parts.

For other, non-MIME messages, the “Subject” header line is closely examined. Two informations are
extracted: the part number (usually given in parentheses) and a unique identifier, which is used to group
series of postings. If the subject is, for example, “uudeview.tgz (01/04)”, the scanner concludes that this
message is the first in a series of four, and the indicated filename is an ideal key to identify each of the four
parts.

If the subject is incomplete (no part number) or missing, the scanner tries to make the best of the
available information, but some of the advanced features won’t work. For example, without any informa-
tion about the part number, it must be assumed that the available parts are in correct order and can’t be
automatically rearranged.

All the information is gathered in a linked list. An application can then examine the nodes of the list
and pick individual items for decoding. The decoding functions will then visit the parts of a file in correct
order and extract the binary data.

Because of heavy testing of the routines against real-life data and many problem reports from users, the
functions have become very robust, even against input files with few, missing or broken information.

Figure 1 displays how the library can be integrated into an application. The library does not assume
any capabilities of the operating system or application language, and can thus be used in almost any en-
vironment. The few necessary interfaces must be provided by the application, which does usually know a
great deal more about the target system.

The idea of the “language interface” is to allow integration of the library services into other program-
ming languages; if the application is itself written in C, there’s no need for a separate interface, of course.
Such an interface currently exists for the Tcl scripting language; other examples might be Visual Basic,
Perl or Delphi.

1.3 Terminology

These are some buzzwords that will be used in the following text.

� “Encoded data” is binary data encoded by one of the methods “uuencoding”, “xxencoding”, “Base64”
or “BinHex”.

� “Message” refers to both complete email messages and Usenet news postings, including the complete
headers. The format of a message is described in [RFC0822]. A “message body” is an email message
or news posting without headers.

2

� A “mail folder” is a number of concatenated messages.

� “MIME” refers to the standards set in [RFC1521].

� A “multipart message” is an entity described by the MIME standard. It is a single message divided
into one or more individual parts by a unique boundary.

� A “partial message” is also described by the MIME standard. It is a message with an associated
identifier and a part number. Large messages can be split into multiple partial messages on the
sender’s side. The recipient’s software groups the partial messages by their identifier and composes
them back into the original large message.

� The term “partial message” only refers to one part of the large message. The original, partialized
message is referred to as “multi-part message” (note the hyphen). To clarify, one part of a multi-part
message is a partial message.

2 Compiling the Library

On Unix systems, configuration and compilation is trivial. The script configure automatically checks
your system and configures the library appropriately. A subsequent “make” compiles the modules and
builds the final library.

On other systems, you must manually create the configuration file and the Makefile. The configuration
file config.h contains a set of preprocessor definitions and macros that describe the available features
on your systems.

2.1 Creating config.h by hand

You can find all available definitions in config.h.in. This file undefines all possible definitions; you
can create your own configuration file starting from config.h.in and editing the necessary differences.

Most definitions are either present or absent, only a few need to have a value. If not explicitly men-
tioned, you can activate a definition by changing the default undef into define. The following defini-
tions are available:

2.1.1 System Specific

SYSTEM DOS Define for compilation on a DOS system. Currently unused.

SYSTEM QUICKWIN Define for compilation within a QuickWin1 program. Currently unused.

SYSTEM WINDLL Causes all modules to include <windows.h> before any other include file. Makes
uulib.c export a DllEntryPoint function.

SYSTEM OS2 Causes all modules to include <os2.h> before any other include file.

2.1.2 Compiler Specific

PROTOTYPES Define if your compiler supports function prototypes.

UUEXPORT This can be a declaration to all functions exported from the decoding library. Frequently
needed when compiling into a shared library.

TOOLEXPORT Similar to TOOLEXPORT, but for the helper functions from the replacement functions in
fptools.c.

1The Microsoft compilers offer the QuickWin target to allow terminal-oriented programs to run in the Windows environment

3

2.1.3 Header Files

There are a number of options that define whether header files are available on your system. Don’t
worry if some of them are not. If a header file is present, define “HAVE name-of-header”: HAVE-
ERRNO H, HAVE FCNTL H, HAVE IO H, HAVE MALLOC H, HAVE MEMORY H, HAVE UNISTD H and
HAVE SYS TIME H (for <sys/time.h>). Some other include files are needed as well, but there are no
macros for mandatory include files.

There’s also a number of header-specific definitions that do not fit into the general present-or-not-
present scheme.

STDC HEADERS Define if your header files conform to ANSI C. This requires that stdarg.h is present,
that stdlib.h is available, defining both malloc() and free(), and that string.h defines
the memory functions family (memcpy() etc).

HAVE STDARG H Implicitly set by STDC HEADERS. You only need to define this one if STDC HEADERS
is not defined but <stdarg.h> is available.

HAVE VARARGS H varargs can be used as an alternative to stdarg. Define if the above two values are
undefined and <varargs.h> is available.

TIME WITH SYS TIME Define if HAVE SYS TIME H and if both <sys/time.h> and <time.h>
can be included without conflicting definitions.

2.1.4 Functions

HAVE STDIO Define if standard I/O (stdin, stdout and stderr) is available.

HAVE GETTIMEOFDAY Define if your system provides the gettimeofday() system call, which is
needed to provide microsecond resolution to the busy callback. If this function is not available,
time() is used.

2.1.5 Replacement Functions

The tools library fptools defines many functions that aren’t standard on all systems. Most of them do
not differ in behavior from their originals, but might be slightly slower. But since they are usually only
needed in non-speed-critical sections, the replacements are used throughout the library. For a full listing of
the available replacement functions, see section 11.

However, there are two functions, strerror and tempnam, that aren’t fully implemented. The
replacement strerror does not have a table of error messages and only produces the error number as
string, and the “fake” tempnam does not necessarily use a proper temp directory.

Because some functionality is missing, the replacement functions should only be used if the original is
not available.

strerror If your system does not provide a strerror function of its own, define to FP strerror.
This causes the replacement function to be used throughout the library.

tempnam If your system does not provide a tempnam function of its own, define to FP tempnam. This
causes the replacement function to be used throughout the library. Must not be defined if the function
is in fact available.

2.2 Creating the Makefile by hand

The Makefile is automatically generated by the configuration script from the template in Makefile.in.
This section explains how the template must be edited into a proper Makefile.

Just copy Makefile.in to Makefile and edit the place-holders for the following values.

CC Your system’s “C” compiler.

4

CFLAGS The compilation flags to be passed to the compiler. This must include “-I.” so that the include
files from the local directory are found, and “-DHAVE CONFIG H” to declare that a configuration
file is present.

RANLIB Set to “ranlib” if such a program is available on your system, or to “:” (colon) otherwise.

VERSION A string holding the release number of the library, currently “0.5”

PATCH A string holding the patchlevel, currently “15”.

Some systems do not know Makefiles but offer the concept of a “project”.2 In this case, create a
new project targeting a library and add all source codes to the project. Then, make sure that the in-
clude path includes the current directory. Add options to the compiler command so that the symbol
“HAVE CONFIG H” gets defined. Additionally, the symbol “VERSION” must be defined as a string
holding the release number, currently “0.5” and “PATCH” must be defined as a string holding the patch
level, currently “15”.

On 16-bit systems, the package should be compiled using the “Large” memory model, so that more
than just 64k data space is available.

2.3 Compiling your Projects

Compiling the parts of your project that use the functions from the decoding library is pretty straightfor-
ward:

� All modules that call library functions must include the <uudeview.h> header file.

� Optionally, if you want to use the replacement functions to make your own application more portable,
they may also include <fptools.h>.

� If your compiler understands about function prototypes, define the symbol PROTOTYPES. This
causes the library functions to be declared with a full parameter list.

� Modify the include file search path so that the compiler finds the include files (usually with the “-I”
option).

� Link with the libuu.a library, usually using the “-luu” option.

� Make sure the library is found (usually with the “-L” option).

3 Callback Functions

3.1 Intro

At some points, the decoding library offers to call your custom procedures to do jobs you want to take
care of yourself. Some examples are the “Message Callback” to print a message or the “Busy Callback”,
which is frequently called during lengthy processing of data to indicate the progress. You can hook up your
functions by calling some library function with a pointer to your function as a parameter.

In some cases, you will want that one of your functions receives certain data as a parameter. One
reason to achieve this would be through global data; another possibility is provided through the passing of
an opaque data pointer.

All callback functions are declared to take an additional parameter of type void*. When hooking up
one of your callbacks, you can specify a value that will passed whenever your function is called. Since this
pointer is never touched by the library, it can be any kind of data, usually some composed structure. Some
application for the Message Callback might be a FILE* pointer to log the messages to.

For portability reasons, you should declare your callbacks with the first parameter actually being a
void* pointer and only cast this pointer to its real type within the function body. This prevents compiler
warnings about the callback setup.

2Actually, most project-oriented systems compile the project definitions into a Makefile for use by the back-ends.

5

3.2 Message Callback

For portability reasons, the library does not assume the availability of a terminal, so it does not initially
know where to print messages to. The library generates some messages about its progress as well as more
serious warnings and errors. An application should provide a message callback that displays them. The
function might also choose to ignore informative messages and only display the fatal ones.

A Message Callback takes three parameters. The first one is the opaque data pointer of type void*.
The second one is a text message of more or less arbitrary length without line breaks. The last parameter is
an indicator of the seriousness of this message. A string representation of the warning level is also prefixed
to the message.

UUMSG MESSAGE This is just a plain informative message, nothing important. The application can choose
to simply ignore the message. If a log file is available, it should be logged, but the message should
never result in a modal dialogue.

UUMSG NOTE “Note:” Still an informative message, meaning that the library made a decision on its own
that might interest the user. One example for a note is that the setuid bit has been stripped from a file
mode for security reasons. Notes are nothing serious and may still be ignored.

UUMSG WARNING “Warning:” A warning indicates that a non-serious problem occurred which did not
stop the library from proceeding with the current action. One example is a temporary file that could
not be removed. Warnings should be displayed, but an application may decide to continue even
without user intervention.

UUMSG ERROR “ERROR:” A problem occurred that caused termination of the current request, for ex-
ample if the library tried to access a non-existing file. After an error has occurred, the application
should closely examine the resulting return code of the operation. Error messages are usually printed
in modal dialogues; another option is to save the error message string somewhere and later print the
error message after the application has examined the operation’s return value.

UUMSG FATAL “Fatal Error:” This would indicate that a serious problem has occurred that prevents the
library from processing any more requests. Currently unused.

UUMSG PANIC “Panic:” Such a message would indicate a panic condition, meaning the application
should terminate without further clean-up handling. Unused so far.3

3.3 Busy Callback

Some library functions, like scanning of an input file or decoding an output file, can take quite some time.
An application will usually want to inform the user of the progress. A custom “Busy Callback” can be
provided to take care of this job. This function will then be called frequently while a large action is being
executed within the library. It is not called when the application itself has control.

Apart from the usual opaque data pointer, the Busy Callback receives a structure of type uuprogress
with the following members:

action What the library is currently doing. One of the following integer constants:

UUACT IDLE The library is idle. This value shouldn’t be seen in the Busy Callback, because the
Busy Callback is never called in an idle state.

UUACT SCANNING Scanning an input file.

UUACT DECODING Decoding a file.

UUACT COPYING Copying a file.

UUACT ENCODING Encoding a file.

3It is not intended that this and the previous error levels will ever be used. Currently, there’s no need to include handling for them.

6

curfile The name of the file we’re working on. May include the full path. Guaranteed to be 256
characters or shorter.

partno When decoding a file, this is the current part number we’re working on. May be zero.

numparts The maximum part number of this file. Guaranteed to be positive (non-zero).

percent The percentage of the current part already processed. The total percentage can be calculated as���������
	���
���������	���
�������������� ��!"	���
���#
.

fsize The size of the current file. The percent information is only valid if this field is positive. Whenever
the size of a file cannot be properly determined, this field is set to -1; in this case, the percent field
may hold garbage.

In some cases, it is possible that the percent counter jumps backwards. This happens seldom enough
not to worry about it, but the callback should take care not to crash in this case.4

The Busy Callback is declared to return an integer value. If a non-zero value is returned, the current
operation from which the callback was called is canceled, which then aborts with a return value of UURET-
CANCEL (see later).

3.4 File Callback

Input files are usually needed twice, first for scanning and then for decoding. If the input files are down-
loaded from a remote server, perhaps by NNTP, they would have to be stored on the local disk and await
further handling. However, the user may choose not to decode some files after all.

If disk space is important, it is possible to install a “File Callback”. When scanning a file, it is assigned
an “Id”. After scanning has completed, the application can delete the input file. If it should be required later
on for decoding, the File Callback is called to map the Id back to a filename, possibly retrieving another
copy and disposing of it afterwards.

The File Callback receives four parameters. The first is the opaque data pointer, the second is the Id
that was assigned to the file while scanning. The fourth parameter is an integer. If it is non-zero, then the
function is supposed to retrieve the file in question, store it on local disk, and write the resulting filename
into the area to which the third parameter (a char* pointer) points. A fourth parameter of zero indicates
that the decoder is done handling the file, so that the function can decide whether or not to remove the file.

The function must return UURET OK upon success, or any other appropriate error code upon failure.
Since it can usually be assumed that disk space is plentily available, and storing a file is “cheaper” than

retrieving it twice, this mechanism has not been used so far.

3.5 Filename Filter

For portability reasons, the library does not make any assumptions of the legality of certain filenames. It
will pick up a “garbage” file name from the encoded file and happily use it if not told otherwise. For
example, on DOS systems many filenames must be truncated in order to be valid.

If a “Filename Filter” is installed, the library will pass each potential filename to the filter and then use
the filename that the filter function returns. The filter also has to remove all directory information from the
filename – the library itself does not know about directories at all.

The filter function receives the potential filename as string and must return a pointer to a string with
the corrected filename. It may either return a pointer to some position in the original string or a pointer to
some static area, but it should not modify the source string.

Two examples of filename filters can be found among the UUDeview distribution as uufnflt.c.
The DOS filter function disposes directory information, uses only the first 8 characters of the base filename
and the first three characters after the last ’.’ (since a filename might have two extensions). Also, space

4This happens if, in a MIME multipart posting, the final boundary cannot be found. After searching the boundary until the
end-of-file, the scanner resets itself to the location of the previous boundary.

7

characters are replaced by underscores. The Unix filter just returns a pointer to the filename part of the
name (without directory information).

The “garbage” filename mentioned above was just for the sake of argument. It is generally safe to
assume that the input filename is not too weird; after all, it is a filename valid on some system. Still, the
user should always be granted the possibility of renaming a file before decoding it, to allow decoding of
files with insane filenames.

4 The File List

While scanning the input files, a linked list is built. Each node is of type uulist and describes one file,
possibly composed of several parts. This section describes the members of the structure that may be of
interest to an application.

state Describes the state of this file. Either the value UUFILE READ5 or a bitfield of the following
values:

UUFILE MISPART The file is missing at least one part. This bit is set if the part numbers are
non-sequential. Usually results in incorrect decoding.

UUFILE NOBEGIN No “begin” line was detected. Since Base64 files do not have begin lines, this
bit is never set on them. For BinHex files, the initial colon is used.

UUFILE NOEND No “end” line was detected. Since Base64 files do not have end lines, this bit is
never set on them. A missing end on uuencoded or xxencoded files usually means that the file
is incomplete. For BinHex, the trailing colon is used as end marker.

UUFILE NODATA No encoded data was found within these parts.

UUFILE OK This file appears to be okay, and decoding is likely to be successful.

UUFILE ERROR A decode operation was attempted, but failed, usually because of an I/O error.

UUFILE DECODED This file has already been successfully decoded.

UUFILE TMPFILE The file has been decoded into a temporary file, which can be found using the
binfile member (see below). This flag gets removed if the temporary file is deleted.

mode For uuencoded and xxencoded files, this is the file mode found on the “begin” line, Base64 and
BinHex files receive a default of 0644. A decode operation will try to restore this mode.

uudet The type of encoding this file uses. May be 0 if UUFILE NODATA or one of the following values:

UU ENCODED for uuencoded data,

B64ENCODED for Base64 encoded data,

XX ENCODED for xxencoded data,

BH ENCODED for BinHex data,

PT ENCODED for plain-text “data”, or

QT ENCODED for MIME quoted-printable encoded text.

size The approximate size of the resulting file. It is an estimated value and can be a few percent off the
final value, hence the suggestion to display the size in kilobytes only.

filename The filename. For uuencoded and xxencoded files, it is extracted from the “begin” line. The
name of BinHex files is encoded in the first data bytes. Base64 files have the filename given in the
“Content-Type” header. This field may be NULL if state!=UUFILE OK.

5This value should only appear internally, never to be seen by an application.

8

subfname A unique identifier for this group of parts, usually derived from the “Subject” header of each
part. It is possible that two nodes with the same identifier exist in the file list: If a group of files is
considered “complete”, a new node is opened up for more parts with the same Id.

mimeid Stores the “id” field from the “Content-Type” information if available. Actually, this Id is the
first choice for grouping of files, but not surprisingly, non-MIME mails or articles do not have this
information.

mimetype Stores this part’s “Content-Type” if available.

binfile After decoding, this is the name of the temporary file the data was decoded to and stored in.
This value is non-NULL if the flag UUFILE TMPFILE is set in the state member above.

haveparts The part numbers found for this group of files as a zero-terminated ordered integer array.
Some extra care must be taken, because a file may have a zeroth part as its first part. Thus if
haveparts[0] is zero, it indicates a zeroth part, and the list of parts continues. A file may have
at most one zeroth part, so if both haveparts[0] and haveparts[1] are zero, the zeroth part
is the only part of this file.

No more than 256 parts are listed here.

misparts Similar to haveparts; a zero-terminated ordered integer array of missing parts, or simply
NULL if no parts are missing. Since we don’t mind if a file doesn’t have a zeroth part, this array does
not have the above problems.

5 Return Values

Most of the library functions return a value indicating success or the type of error occurred. The following
values can be returned:

UURET OK The action completed successfully.

UURET IOERR An I/O error occurred. There may be many reasons from “File not found” to “Disk full”.
This return code indicates that the application should consult errno for more information.

UURET NOMEM A malloc() operation returned NULL, indicating that memory resources are exhausted.
Never seen this one in a VM system.

UURET ILLVAL You tried to call some operation with invalid parameters.

UURET NODATA An attempt was made to decode a file, but no encoded data was found within its parts.
Also returned if decoding a uuencoded or xxencoded file with missing “begin” line.

UURET NOEND A decoding operation was attempted, but the decoded data didn’t have a proper “end” line.
A similar condition can also be detected for BinHex files (where the colon is used as end marker).

UURET UNSUP You tried to encode using an unsupported communications channel, for example piping
to a command on a system without pipes.

UURET EXISTS The target file already exists (upon decoding), and you didn’t allow to overwrite existing
files.

UURET CONT This is a special return code, indicating that the current operation must be continued. This
return value is used only by two encoding functions, so see the documentation there.

UURET CANCEL The current operation was canceled, meaning that the Busy Callback returned a non-zero
value usually because of user request. The library does not produce this return value on its own, so
if your Busy Callback always returns zero, there’s no need to handle this “Error”.

9

6 Options

An application program can set and query a number of options. Some of them are read-only, but others can
modify the behavior quite drastically. Some of them are intended to be set by the end user via an options
menu.

UUOPT VERSION (string, read-only)
Retrieves the full version number of the library, composed as MAJOR.MINORplPATCH (the major
and minor version numbers and the patchlevel are integers).

UUOPT FAST (integer, default=0)
If set to 1, the library will assume that each input file consists of exactly one email message or
newsgroup posting. After finding encoded data within a file, the scanner will not continue to look
for more data below. This strategy can save a lot of time, but has the drawback that files also cannot
be checked for completeness – since the scanner does not look for “end” lines, we don’t notice them
missing.

This flag does not have any effect on MIME multipart messages, which are always scanned to the
end (alas, the Epilogue will be skipped). Actually, with this flag set, the scanner becomes more
MIME-compliant.

UUOPT DUMBNESS (integer, default=0)
As already mentioned, the library evaluates information found in the part’s “Subject” header line if
available. The heuristics here are versatile, but cannot be guaranteed to be completely failure-proof.
If false information is derived, the parts will be ordered and grouped wrong, resulting in wrong
decoding.

If the “dumbness” is set to 1, the code to derive a part number is disabled; it will then be assumed that
all parts within a group appear in correct order: the first one is assigned number 1 etc. However, part
numbers found in MIME-headers are still used (I haven’t yet found a file where these were wrong).

A dumbness of 2 also switches off the code to select a unique identifier from the subject line. This
does still work with single-part files6 and might work with multi-part files, as long as they’re in
correct order and not mixed. The filename is found on the first part and then passed on to the
following parts.

This option only takes effect for files scanned afterwards.

UUOPT BRACKPOL (integer, default=0)
Series of multi-part postings on the Usenet usually have subject lines like “You must see this! [1/3]
(2/4)”. How to parse this information? Is this the second part of four in a series of three postings, or
is it the first of three parts and the second in a series of four postings? The library cannot know, and
simply gives numbers in () parentheses precedence over number in [] brackets. If this assumption
fails, the parts will be grouped and ordered completely wrong.

Setting the “bracket policy” to 1 changes this precedence. If now both parentheses and brackets are
present, the numbers within brackets will be evaluated first.

This option only takes effect for files scanned afterwards.

UUOPT VERBOSE (integer, default=1)
If set to 0, the Message Callback will not be bothered with messages of level UUMSG MESSAGE or
UUMSG NOTE. The default is to generate these messages.

UUOPT DESPERATE (integer, default=0)
By default, the library refuses to decode incomplete files and generates errors. But if switched into
“desperate mode” these kinds of errors are ignored, and all available data is decoded. The usefulness
of the resulting corrupt file depends on the type of the file.

6Of course, this option wouldn’t make sense with single-part files, since there’s no “grouping” involved that might fail.

10

UUOPT IGNREPLY (integer, default=0)
If set to 1, the library will ignore email messages and news postings which were sent as “Reply”,
since they are less likely to feature useful data. There’s no real reason to turn on this option any more
(earlier versions got easily confused by replies).

UUOPT OVERWRITE (integer, default=1)
When the decoder finds that the target file already exists, it is simply overwritten silently by default.
If this option is set to 0, the decoder fails instead, generating a UURET EXIST error.

UUOPT SAVEPATH (string, default=(empty))
Without setting this option, files are decoded to the current directory. This “save path” is handled
as prefix to each filename. Because the library does not know about directory layouts, the resulting
filename is simply the concatenation of the save path and the target file, meaning that the path must
include a final directory separator (slash, backslash, or whatever).

UUOPT IGNMODE (integer, default=0)
Usually, the decoder tries to restore the file mode found on the “begin” line of uuencoded and xxen-
coded files. This is turned off if this option is set to 1.

UUOPT DEBUG (integer, default=0)
If set to 1, all messages will be prefixed with the exact sourcecode location (filename and line num-
ber) where they were created. Might be useful if this is not clear from context.

UUOPT ERRNO (integer, read-only)
This “option” can be queried after an operation failed with UURET IOERR and returns the errno
value that originally caused the problem. The “real” value of this variable might already be obscured
by secondary problems.

UUOPT PROGRESS (uuprogress, read-only)
Returns the progress structure. This would only make sense in multi-threaded environments where
the decoder runs in one thread and is controlled from another. Although some care is taken while
updating the structure’s values, there might still be synchronization problems.

UUOPT USETEXT (integer, default=0)
If this flag is true, plain text files will be presented for “decoding”. This includes non-decodeable
messages as well as plain-text parts from MIME multipart messages. Since they usually don’t have
associated filenames, a unique name will be created from a sequential four-digit number.

UUOPT PREAMB (integer, default=0)
Whether to use the plain-text preamble and epilogue from MIME multipart messages. The standard
defines they’re supposed to be ignored, so there’s no real reason to set this option.

UUOPT TINYB64 (integer, default=0)
Support for tiny Base64 data. If set to off, the scanner does not recognize stand-alone Base64 en-
coded data with less than 3 lines. The problem is that in some cases plain text might be misinterpreted
as Base64 data, since, for example, any four-character alphanumerical string like “Argh” appearing
on a line of its own is valid Base64 data. Since encoded files are usually longer, and there is consid-
erable confusion about erroneous Base64 detection, this option is off by default. There’s probably no
need to present this option separately to the user. It’s reasonable to associate it with the “desperate
mode” described above.

Note that this option only affects stand-alone data. Input from Mime messages with the encoding
type correctly specified in the “Content-Transfer-Encoding” header is always evaluated.

There is also no problem with encoding types different than Base64, since they have an explicit
notion of the beginning and end of a file, and no danger of misinterpretation exists.

11

UUOPT ENCEXT (string, default=(empty))
When encoding into a file on the local disk, the target files usually receive an extension composed of
the three-digit part number. This may be considered inappropriate for single-part files. If this option
is set, its value is attached to the base file name as extension for the target file. A dot ‘.’ is inserted
automatically. When using uuencoding, a sensible value might be “uue”.

This option does not alter the behaviour on multi-part files, where the individual parts always receive
the three-digit part number as extension.

UUOPT REMOVE (integer, default=0)
If true, input files are deleted if data was successfully decoded from them. Be careful with this option,
as the library does not care if the file contains any other useful information besides the decoded data.
And it also does not and can not check the integrity of the decoded file. Therefore, if in doubt of
the incoming data, you should do a confidence check first and then delete the relevant input files
afterwards. But then, this option was requested by many users.

UUOPT MOREMIME (integer, default=0)
Makes the library behave more MIME-compliant. Normally, some liberties are taken with seemingly
MIME files in order to find encoded data within it, therefore also finding files within broken MIME
messages. If this option is set to 1, the library is more strict in its handling of MIME files, and will for
example not allow Base 64 data outside of properly tagged subparts, and will not accept “random”
encoded data.

You can also set the value of this option to 2 to enforce strict MIME adherance. If the option is
1, the library will still look into plain text attachments and try to find encoded data within it. This
causes for example uuencoded files that were then sent in a MIME envelope to be recognized. With
an option value of 2, the library won’t even do that, trusting all MIME header information.

7 General Functions

After describing all the framework in the previous chapters, it is time to mention some function calls. Still,
the functions presented here don’t actually do anything, they just query and modify the behavior of the core
functions.

int UUInitialize (void)
This function initializes the library and must be called before any other decoding or encoding func-
tion. During initialization, several arrays are allocated. If memory is exhausted, UURET NOMEM is
returned, otherwise the initialization will return successfully with UURET OK.

int UUCleanUp (void)
Cleans up all resources that have been allocated during a program run: memory structures, tem-
porary files and everything. No library function may be called afterwards, with the exception of
UUInitialize to start another run.

int UUGetOption (int opt, int *ival, char *cval, int len)
Retrieves the configuration option (see section 6) opt. If the option is integer, it is stored in ival
(only if ival!=NULL) and also returned as return value. String options are copied to cval. In-
cluding the final nullbyte, at most len characters are written to cval. If the progress information
is queried with UUOPT PROGRESS, cval must point to a uuprogress structure and len must
equal sizeof(uuprogress).

For integer options, cval may be NULL and len 0 and vice versa: for string options, ival is not
evaluated.

int UUSetOption (int opt, int ival, char *cval)
Sets one of the configuration options. Integer options are set via ival (cval may be NULL), and
string options are copied from the null-terminated string cval (ival may be 0). Returns UURET-
ILLVAL if you try to set a read-only value, or UURET OK otherwise.

12

char *UUstrerror (int errcode)
Maps the return values UURET * into error messages:

UURET OK “OK”

UURET IOERR “File I/O Error”

UURET NOMEM “Not Enough Memory”

UURET ILLVAL “Illegal Value”

UURET NODATA “No Data found”

UURET NOEND “Unexpected End of File”

UURET UNSUP “Unsupported function”

UURET EXISTS “File exists”

int UUSetMsgCallback (void *opaque, void (*func) ())
Sets the Message Callback function to func (see section 3.2). opaque is the opaque data pointer
that is passed untouched to the callback whenever it is called. To prevent compiler warnings, a pro-
totype of the callback should appear before this line. Always returns UURET OK. If func==NULL,
the callback is disabled.

int UUSetBusyCallback (void *, void (*func) (), long msecs)
Sets the Busy Callback function to func (see section 3.3). msecs gives a timespan in milliseconds;
the library will try to call the callback after this timespan has passed. On some systems, the time can
only be queried with second resolution – in that case, timing will be quite inaccurate. The semantics
for the other two parameters are the same as in the previous function. If func==NULL, the busy
callback is disabled.

int UUSetFileCallback (void *opaque, int (*func) ())
Sets the File Callback function to func (see section 3.4). Semantics identical to the previous two
functions. There is no need to install a file callback if this feature isn’t used.

int UUSetFNameFilter (void *opaque, char * (*func) ())
Sets the Filename Filter function to func (see section 3.5). Semantics identical to the previous three
functions. If no filename filter is installed, any filename is accepted. This may result in failures to
write a file because of an invalid filename.

char * UUFNameFilter (char *fname)
Calls the current filename filter on fname. This function is provided so that certain parts of appli-
cations do not need to know which filter is currently installed. This is handy for applications that
are supposed to run on more than one system. If no filename filter is installed, the string itself is re-
turned. Since a filename filter may return a pointer to static memory or a pointer into the parameter,
the result from this function must not be written to.

8 Decoding Functions

Now for the more useful functions. The functions within this section are everything you need to scan and
decode files.

int UULoadFile (char *fname, char *id, int delflag)
Scans a file for encoded data and inserts the result into the file list. Each input file must only be
scanned once; it may contain many parts as well as multiple encoded files, thus it is possible that
many decodeable files are found after scanning one input file. On the other hand it is also possible
that no decodeable data is found. There is no limit to the number of files.7

7Strictly speaking, the memory is of course limited. But try to fill a sensible amount with structures in the 100-byte region.

13

If id is non-NULL, its value is used instead of the filename, and the file callback is used to map the
id back into a filename whenever this input file is needed again. If id is NULL, then the input file
must not be deleted or modified until UUCleanUp has been called.

If delflag is non-zero, the input file will automatically be removed within UUCleanUp. This is
useful when the decoder’s input are also temporary files – this way, the application can forget about
them right after they’re “loaded”. The value of delflag is ignored, however, if id is non-NULL;
combining both options does not make sense.

The behavior of this function is influenced by some of the options, most notably UUOPT FAST.
The two most probable return values are UURET OK, indicating successful completion, or UURET-
IOERR in case of some error while reading the file. The other return values are less likely to appear.

Note that files are even scheduled for destruction if an error did happen during scanning (with the
exception of a file that could not be opened). But error handling is slightly problematic here anyway,
since it might be possible that useful data was found before the error occurred.

uulist * UUGetFileListItem (int num)
Returns a pointer to the numth item of the file list. The elements of this structure are described in
section 4. The list is zero-based. If num is out-of-range, NULL is returned. Usage of this function
is pretty straightforward: loop with an increasing value until NULL is returned. The structure must
not be modified by the application itself. Also, none of the structure’s value should be “cached”
elsewhere, as they are not constant: they may change after each loaded file.

int UURenameFile (uulist *item, char *newname)
Renames one item of the file list. The old name is discarded and replaced by newname. The new
name is copied and may thus point to volatile memory. The name should be a local filename without
any directory information, which would be stripped by the filename filter anyway.

int UUDecodeToTemp (uulist *item)
Decodes the given item of the file list and places the decoded output into a temporary file. This
is intended to allow “previews” of an encoded file without copying it to its final location (which
would probably overwrite other files). The name of the temporary file can be retrieved afterwards by
re-retrieving the node of the file list and looking at its binfile member.

UURET OK is returned upon successful completion. Most other error codes can occur, too. UURET-
NODATA is returned if you try to decode parts without encoded data or with a missing beginning
(uuencoded and xxencoded files only) – of course, this condition would also have been obvious from
the state value of the file list structure.

The setting of UUOPT DESPERATE changes the behavior if an unexpected end of file was found
(usually meaning that one or more parts are missing). Normally, the partially-written target file
is removed and the value UURET NOEND is returned. In desperate mode, the same error code is
returned, but the target file is not removed.

The target file is removed in all other error conditions.

int UURemoveTemp (uulist *item)
After a file has been decoded into a temporary file and is needed no longer, this function can be
called to free the disk space immediately instead of having to wait until UUCleanUp. If a decode
operation is called for later on, the file will simply be recreated.

int UUDecodeFile (uulist *item, char *target)
This is the function you have been waiting for. The file is decoded and copied to its final location.
Calling UUDecodeToTemp beforehand is not required. If target is non-NULL, then it is im-
mediately used as filename for the target file (without prepending the save path and without passing
it through the filename filter). Otherwise, if target==NULL, the final filename is composed by
concatenating the save path and the result of the filename filter used upon the filename found in the
encoded file.

14

If the target file already exists, the value of the UUOPT OVERWRITE option is checked. If it is false
(zero), then the error UURET EXISTS is generated and decoding fails. If the option is true, the target
file is silently overwritten.8

The file is first decoded into a temporary file, then the temporary file is copied to the final location.
This is done to prevent overwriting target files with data that turns out too late to be invalid.

int UUInfoFile (uulist *item, void *opaque, int (*func) ())
This function can be used to query information about the encoded file. This is either the zeroth part
of a file if available, or the beginning of the first part up to the encoded data otherwise. Once again,
a callback function is used to do the job. func must be a function with two parameters. The first
one is an opaque data pointer (the value of opaque), the other is one line of info about the file (at
maximum, 512 bytes). The callback is called for each line of info.

The callback can return either zero, meaning that it can accept more data, or non-zero, which imme-
diately stops retrieval of more information.

Usually, the opaque pointer holds some information about a text window, so that the callback knows
where to print the next line. In a terminal-oriented application, the user can be queried each 25th line
and the callback can return non-zero if the user doesn’t wish to continue.

int UUSmerge (int pass)
Attempts a “Smart Merge” of parts that seem to belong to different files but which could belong to
the same. Occasionally, you will find a posting with parts 1 to 3 and 5 to 8 of “picture.gif” and part
4 of “picure.gif” (note the spelling). To the human, it is obvious that these parts belong together, to a
machine, it is not. This function attempts to detect these conditions and merge the appropriate parts
together. This function must be called repeatedly with increasing values for “pass”: With pass==0,
only immediate fits are merged, increasing values allow greater “distances” between part numbers,

This function is a bunch of heuristics, and I don’t really trust them. In some cases, the “smart”
merge may do more harm than good. This function should only be called as last resort on explicit
user request. The first call should be made with pass==0, then with pass==1 and at last with
pass=99.

9 Encoding Functions

There are a couple of functions to encode data into a file. You will usually need no more than one of
them, depending on the job you want to do. The functions also differ in the headers they generate. Some
functions do generate full MIME-compliant headers. This may sound like the best choice, but it’s not
always the wisest choice. Please follow the following guidelines.

� Do not produce MIME-compliant messages if you cannot guarantee their proper handling. For ex-
ample, if you create a MIME-compliant message on disk, and the user includes this file in a text
message, the headers produced for the encoded data become not part of the final message’s header
but are just included in the message body. The resulting message will not be MIME-compliant!

� Take it from the author that slightly-different-than-MIME messages give the recipient much worse
headaches than messages that do not try to be MIME in the first place.

� Because of that, headers should only be generated if the application itself handles the final mailing
or posting of the message. Do not rely on user actions.

� Do not encode to Base64 outside of MIME messages. Because some information like the filename
is only available in the MIME-message framework, Base64 doesn’t make much sense without it.

� However, if you can guarantee proper MIME handling, Base64 should be favored above the other
types of encoding. Most MIME-compliant applications do not know the other encoding types.

8If we don’t have permission to overwrite the target file, an I/O error is generated.

15

All of the functions have a bunch of parameters for greater flexibility. Don’t be confused by their
number, usually you’ll need to fill only a few of them. There’s a number of common parameters which can
be explained separately:

FILE *outfile
The output stream, where the encoded data is written to.

FILE *infile, char *infname
Where the input data shall be read from. Only one of both values must be specified, the other can be
NULL.

char *outfname
The name by which the recipient will receive the file. It is used on the “begin” line for uuencoded
and xxencoded data, and in the headers of MIME-formatted messages. If this parameter is NULL, it
defaults to infname. It must be specified if data is read from a stream and infname==NULL.

int filemode
For uuencoded and xxencoded data, the file permissions are encoded into the “begin” line. This
mode can be specified here. If the value is 0, it will be determined by performing a stat() call on
the input file. If this call should fail, a value of 0644 is used as default.

int encoding
The encoding to use. One of the three constants UU ENCODED, XX ENCODED or B64ENCODED.

Now for the functions . . .

int UUEncodeMulti (FILE *outfile, FILE *infile,
char *infname, int encoding,
char *outfname, char *mimetype,
int filemode)

Encodes data into a subpart of a MIME “multipart” message. Appropriate “Content-Type” headers
are produced, followed by the encoded data. The application must provide the envelope and bound-
ary lines. If mimetype!=NULL, it is used as value for the “Content-Type” field, otherwise, the
extension from outfname or infname (if outfname==NULL) is used to look up the relevant
type name.

int UUEncodePartial (FILE *outfile, FILE *infile,
char *infname, int encoding,
char *outfname, char *mimetype,
int filemode, int partno,
long linperfile)

Encodes data as the body of a MIME “message/partial” message. This type allows message frag-
mentation. This function must be called repetitively until it runs out of input data. The application
must provide a valid envelope with a “message/partial” content type and proper information about
the part numbers.

Each call produces linperfile lines of encoded output. For uuencoded and xxencoded files, each
output line encodes 45 bytes of input data, each Base64 line encodes 57 bytes. If linperfile==0,
this function is equivalent to UUEncodeMulti.

Different handling is necessary when reading from an input stream (if infile!=NULL) compared
to reading from a file (if infname!=NULL). In the first case, the function must be called until
feof() becomes true on the input file, or an error occurs. In the second case, the file will be
opened internally. Instead of UURET OK, a value of UURET CONT is returned for all but the last
part.

16

int UUEncodeToStream (FILE *outfile, FILE *infile,
char *infname, int encoding,
char *outfname, int filemode)

Encodes the input data and sends the plain output without any headers to the output stream. Be aware
that for Base64, the output does not include any information about the filename.

int UUEncodeToFile (FILE *infile, char *infname,
int encoding, char *outfname,
char *diskname, long linperfile)

Encodes the input data and writes the output into one or more output files on the local disk. No
headers are generated. If diskname==NULL, the names of the encoded files are generated by
concatenating the save path (see the UUOPT SAVEPATH option) and the base name of outfname
or infname (if outfname==NULL).

If diskname!=NULL and does not contain directory information, the target filename is the con-
catenation of the save path and diskname. If diskname is an absolute path name, it is used
itself.

From the so-generated target filename, the extension is stripped. For single-part output files, the
extension set with the UUOPT ENCEXT option is used. Otherwise, the three-digit part number is
used as extension. If the destination file does already exist, the value of the UUOPT OVERWRITE is
checked; if overwriting is not allowed, encoding fails with UURET EXISTS.

int UUE PrepSingle (FILE *outfile, FILE *infile,
char *infname, int encoding,
char *outfname, int filemode,
char *destination, char *from,
char *subject, int isemail)

Produces a complete MIME-formatted message including all necessary headers. The output from
this function is usually fed directly into a mail delivery agent which honors headers (like “sendmail”
or “inews”).

If from!=NULL, it is sent as the sender’s email address in the “From” header field. Some MDA
programs are able to provide the sender’s address themselves, so this value may be NULL in certain
cases.

If subject!=NULL, the text is included in the “Subject” header field. The subject is extended with
information about the file name and part number (in this case, always “(001/001)”).

“Destination” must not be NULL. Depending on the “isemail” flag, its contents are sent either in the
“To” or “Newsgroups” header field.

int UUE PrepPartial (FILE *outfile, FILE *infile,
char *infname, int encoding,
char *outfname, int filemode,
int partno, long linperfile,
long filesize,
char *destination, char *from,
char *subject, int isemail)

Similar to UUE PrepSingle, but produces a complete MIME-formatted “message/partial” mes-
sage including all necessary headers. The function must be called repetitively until it runs out of
input data. For more explanations, see the description of the function UUEncodePartial above.

The only additional parameter is filesize. Usually, this value can be 0, as the size of the input
file can usually be determined by performing a stat() call. However, this might not be possible if
infile refers to a pipe. In that case, the value of filesize is used.

If the size of the input data cannot be determined, and filesize is 0, the function refuses encoding
into multiple files and produces only a single stream of output.

17

#include <stdio.h>
#include <stdlib.h>
#include <config.h>
#include <uudeview.h>

int main (int argc, char *argv[])
{

UUInitialize ();
UULoadFile (argv[1], NULL, 0);
UUDecodeFile (UUGetFileListItem (0), NULL);
UUCleanUp ();
return 0;

}

Figure 2: The “Trivial Decoder”, Version 1

If data is read from a file instead from a stream (infile==NULL), the function opens the file
internally and returns UURET CONT instead of UURET OK on successful completion for all but the
last part.

10 The Trivial Decoder

In this section, we implement and discuss the “Trivial Decoder”, which illustrates the use of the decoding
functions. We start with the absolute minimum and then add more features and actually end up with a
limited, but useful tool. For a full-scale frontend, look at the implementation of the “UUDeview” program.
The sample code can be found among the documentation files as td-v1.c, td-v2.c and td-v3.c.

10.1 Version 1

The minimal decoding program is displayed in Figure 2. Only four code lines are needed for the imple-
mentation. <stdlib.h> defines NULL, <uudeview.h> declares the decoding library functions, and
<config.h>, the library’s configuration file, is needed for some configuration details9.

After initialization, the file given as first command line parameter is scanned. No symbolic name is
assigned to the file, so that we don’t need a file callback. After the scanning, the encoded file is decoded
and stored in the current directory by its native name.

Of course, there is much to complain about:

� No error checking is done. For example, does the input file exist?

� Only a single file can be scanned for encoded data.

� If more than one encoded file is found, only the first one is decoded, the others are ignored.

� No checking is done if there actually is encoded data in the file and whether this data is valid.

10.2 Version 2

The second version, printed in figure 3, addresses all of the above problems. The code size more than
tripled, but that’s largely because of the error messages.

9Actually, only the definition of UUEXPORT is needed. You could omit <config.h> and define this value elsewhere, for
example in the project definitions.

18

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <config.h>
#include <uudeview.h>

int main (int argc, char *argv[])
{

uulist *item;
int i, res;

UUInitialize ();
for (i=1; i<argc; i++)
if ((res = UULoadFile (argv[i], NULL, 0)) != UURET_OK)

fprintf (stderr, "could not load %s: %s\n",
argv[i], (res==UURET_IOERR) ?
strerror (UUGetOption (UUOPT_ERRNO, NULL, NULL, 0)) :
UUstrerror(res));

for (i=0; (item=UUGetFileListItem(i)) != NULL; i++) {
if ((item->state & UUFILE_OK) == 0)

continue;
if ((res = UUDecodeFile (item, NULL)) != UURET_OK) {

fprintf (stderr, "error decoding %s: %s\n",
(item->filename==NULL)?"oops":item->filename,
(res==UURET_IOERR) ?
strerror (UUGetOption (UUOPT_ERRNO, NULL, NULL, 0)) :
UUstrerror(res));

}
else {

printf ("successfully decoded ’%s’\n", item->filename);
}

}
UUCleanUp ();
return 0;

}

Figure 3: The “Trivial Decoder”, Version 2

19

All files given on the command line are scanned10, and all encoded files are decoded. Of course, it
is now also possible for an encoded file to span its parts over more than one input file. Appropriate error
messages are printed upon failure of any step, and a success message is printed for successfully decoded
files.

Apart from the program’s unfriendliness that there is no user-interaction like selective decoding of files,
choice of a target directory etc., there are only three more items to complain about:

� Errors and other messages produced within the library aren’t displayed because there’s no message
callback.

� No filename filter is installed, so decoding of files with invalid filenames will fail; this especially
includes filenames with directory information.

� No information is printed for invalid encoded files, or files with missing parts (they’re simply skipped).

10.3 Version 3

This last section adds a simple filename filter (targeting at a DOS system with 8.3 filenames) and a simple
message callback, which just dumps messages to the console. Figure 4 lists the changes with respect to
version 2 (for the full listing, refer to the source file on disk).

The message callback, a one-liner, couldn’t be simpler. The filename filter will probably not win an
award for good programming style, but it does its job of stripping Unix-style or DOS-style directory names
and using only the first 8 characters of the base filename and the first three characters of the extension. If
the filename contains space characters, they’re replaced by underscores. Note that dname, the storage for
the resulting filename, is declared static, as it must be accessible after the filter function has returned.

For portability, the filename filter uses a replacement function from the fptools library instead of
relying of a native implementation of the strrchr function.

Both callbacks are installed right after initializing the library. Since now the filename of the decoded
file may be different from the filename of the file list structure, we recreate the resulting filename by calling
the filename filter ourselves for display, so that the user knows where to look for the file.

11 Replacement functions

This section is a short reference for the replacement functions from the fptools library. Some of them
may be useful in the application code as well. Most of these functions are pretty standard in modern sys-
tems, but there’s also a few from the author’s imagination. Each of the functions is tagged with information
why this replacement exists:

� “nonstandard” (ns): this function is available on some systems, but not on others. Functions with
this tag could be safely replaced with a native implementation.

� “feature” (f): the replacement adds some functionality with respect to the “original”.

� “author”(a): just a function the author considered useful.

void FP free (void *) (f)
ANSI C guarantees that free() can be safely called with a NULL argument, but some old systems
dump core. This replacement just ignores a NULL pointer and passes anything else to the original
free().

char * FP strdup (char *ptr) (ns)
Allocates new storage for the string ptr and copies the string including the final nullbyte to the new
location (thus “duplicating” the string). Returns NULL if the malloc() call fails.

10With Microsoft compilers on MS-DOS systems, don’t forget to link with setargv.obj to properly handle wildcards

20

. . . right after the #includes

#include <fptools.h>

void MsgCallBack (void *opaque, char *msg, int level)
{

fprintf (stderr, "%s\n", msg);
}

char * FNameFilter (void *opaque, char *fname)
{

static char dname[13];
char *p1, *p2;
int i;

if ((p1 = _FP_strrchr (fname, ’/’)) == NULL)
p1 = fname;

if ((p2 = _FP_strrchr (p1, ’\\’)) == NULL)
p2 = p1;

for (i=0, p1=dname; *p2 && *p2!=’.’ && i<8; i++)
*p1++ = (*p2==’ ’)?(p2++,’_’):*p2++;

while (*p2 && *p2 != ’.’) p2++;
if ((*p1++ = *p2++) == ’.’)
for (i=0; *p2 && *p2!=’.’ && i<3; i++)

*p1++ = (*p2==’ ’)?(p2++,’_’):*p2++;
*p1 = ’\0’;
return dname;

}

. . . within main() after UUInitialize

UUSetMsgCallback (NULL, MsgCallBack);
UUSetFNameFilter (NULL, FNameFilter);

. . . replacing the main loop’s else

else {
printf ("successfully decoded ’%s’ as ’%s’\n",

item->filename,
UUFNameFilter (item->filename));

}

Figure 4: Changes for Version 3

21

char * FP strncpy (char *dest, char *src, int count) (f)
Copies text from the src area to the dest area, until either a nullbyte has been copied or count
bytes have been copied. Differs from the original in that if src is longer than count bytes, then
only count-1 bytes are copied, and the destination area is properly terminated with a nullbyte.

void * FP memdup (void *ptr, int count) (a)
Allocates a new area of count bytes, which are then copied from the ptr area.

int FP stricmp (char *str1, char *str2) (ns)
Case-insensitive equivalent of strcmp.

int FP strnicmp (char *str1, char *str2, int count) (ns)
Case-insensitive equivalent of strncmp.

char * FP strrchr (char *string, int chr) (ns)
Similar to strchr, but returns a pointer to the last occurrence of the character chr in string.

char * FP strstr (char *str1, char *str2) (ns)
Returns a pointer to the first occurrence of str2 in str1 or NULL if the second string does not
appear within the first.

char * FP strrstr (char *str1, char *str2) (ns)
Similar to strstr, but returns a pointer to the last occurrence of str2 in str1.

char * FP stristr (char *str1, char *str2) (a)
Case-insensitive equivalent of strstr.

char * FP strirstr (char *str1, char *str2) (a)
Case-insensitive equivalent of strrstr.

char * FP stoupper (char *string) (a)
Converts all alphabetic characters in string to uppercase.

char * FP stolower (char *string) (a)
Converts all alphabetic characters in string to lowercase.

int FP strmatch (char *str, char *pat) (a)
Performs glob-style pattern matching. pat is a string containing regular characters and the two
wildcards ’?’ (question mark) and ’*’. The question mark matches any single character, the ’*’
matches any zero or more characters. If str is matched by pat, the function returns 1, otherwise 0.

char * FP fgets (char *buf, int max, FILE *file) (f)
Extends the standard fgets(); this replacement is able to handle line terminators from various
systems. DOS text files have their lines terminated by CRLF, Unix files by LF only and Mac files by
CR only. This function reads a line and replaces whatever line terminator present with a single LF.

char * FP strpbrk (char *str, char *accept) (ns)
Locates the first occurrence in the string str of any of the characters in accept.

char * FP strtok (char *str, char *del) (ns)
Considers the string str to be a sequence of tokens separated by one or more of the delimiter
characters given in del. Upon first call with str!=NULL, returns the first token. Later calls with
str==NULL return the following tokens. Returns NULL if no more tokens are found.

char * FP cutdir (char *str) (a)
Returns the filename part of str, meaning everything after the last slash or backslash in the string.
Now replaced with the concept of the filename filter.

22

char * FP strerror (int errcode) (ns)
A rather dumb replacement of the original one, which transforms error codes from errno into
a human-readable error message. This function should only be used if no native implementation
exists; it just returns a string with the numerical error number.

char * FP tempnam (char *dir, char *pfx) (ns)
The original is supposed to return a unique filename. The temporary file should be stored in dir
and have a prefix of pfx. This replacement, too, should only be used if no native implementation
exists. It just returns a temporary filename created by the standard tmpnam(), which not necessarily
resides in a proper TEMP directory. The value returned by this function is an allocated memory area
which must later be freed by calling free.

12 Known Problems

This section mentions a few known problems with the library, which the author considers to be “features”
rather than “bugs”, meaning that they probably won’t be “fixed” in the near future.

� Encoding to BinHex is not yet supported.

� The checksums found in BinHex files are ignored.

� If both data and resource forks in a BinHex file are non-empty, the larger one is decoded. Non-
Mac systems can only use one of them anyway (usually the “data” fork, the “resource” fork usually
contains M68k or PPC machine code).

References

[RFC0822] Crocker, D., “Standard for the Format of ARPA Internet Text Messages”, RFC 822, Network
Working Group, August 1982.

[RFC1521] Borenstein, N., “MIME (Multipurpose Internet Mail Extensions) Part One”, RFC 1521, Net-
work Working Group, September 1993.

[RFC1741] Faltstrøm, P., Crocker, D. and Fair, E., “MIME Content Type for BinHex Encoded Files”, RFC
1741, Network Working Group, December 1994.

[RFC1806] Troost, R., Dorner, S., “The Content-Disposition Header”, RFC 1806, Network Working
Group, June 1995.

RFC documents (“Request for Comments”) can be downloaded from many ftp sites around the world.

23

Input Octet 1
Input Bit 7 6 5 4 3 2 1 0

Output Data #1 5 4 3 2 1 0
Output Data #2 5 4

Input Octet 2
Input Bit 7 6 5 4 3 2 1 0

Output Data #2 3 2 1 0
Output Data #3 5 4 3 2

Input Octet 3
Input Bit 7 6 5 4 3 2 1 0

Output Data #3 1 0
Output Data #4 5 4 3 2 1 0

Table 1: Bit mapping for Three-in-Four encoding

A Encoding Formats

The following sections describe the four most widely used formats for encoding binary data into plain
text, uuencoding, xxencoding, Base64 and BinHex. Another section shortly mentions Quoted-Printable
encoding.

Other formats exist, like btoa and ship, but they are not mentioned here. btoa is much less efficient than
the others. ship is slightly more efficient and will probably be supported in future.

Uuencoding, xxencoding and Base 64 basically work the same. They are all “three in four” encodings,
which means that they take three octets11 from the input file and encode them into four characters.

Three bytes are 24 bits, and they are divided into 4 sections of 6 bits each. Table 1 describes in detail
how the input bits are copied into the output data bits. 6 bits can have values from 0 to 63; each of the
“three in four” encodings now uses a character table with 64 entries, where each possible value is mapped
to a specific character.

The advantage of three in four encodings is their simplicity, as encoding and decoding can be done
by mere bit shifting and two simple tables (one for encoding, mapping values to characters, and one for
decoding, with the reverse mapping). The disadvantage is that the encoded data is 33% larger than the
input (not counting line breaks and other information added to the encoded data).

The before-mentioned ship data is more effective; it is a so-called Base 85 encoding. Base 85 encodings
take four input bytes (32 bits) and encode them into five characters. Each of this characters encode a value
from 0 to 84; five characters can therefore encode a value from 0 to $�%�&('*)+)�,�- � %., ��/ % , covering the
complete 32 bit range. Base 85 encodings need more “complicated” math and a larger character table, but
result in only 25% bigger encoded files.

In order to illustrate the encodings and present some actual data, we will present the following text
encoded in each of the formats:

This is a test file for illustrating the various
encoding methods. Let’s make this text longer than
57 bytes to wrap lines with Base64 data, too.
Greetings, Frank Pilhofer

A.1 Uuencoding

A document actually describing uuencoding as a standard does not seem to exist. This is probably the
reason why there are so many broken encoders and decoders around that each take their liberties with the

11The term “octet” is used here instead of “byte”, since it more accurately reflects the 8-bit nature of what we usually call a “byte”

24

Data Value +0 +1 +2 +3 +4 +5 +6 +7

0 ‘ ! ” # $ % & ’
8 () * + , - . /

16 0 1 2 3 4 5 6 7
24 8 9 : ; < = > ?
32 @ A B C D E F G
40 H I J K L M N O
48 P Q R S T U V W
56 X Y Z [\] ˆ

Table 2: Encoding Table for Uuencoding

definition.
The following text describe the pretty strict rules for uuencoding that are used in the UUEnview encod-

ing engine. The UUDeview decoding engine is much more relaxed, according to the general rule that you
should be strict in all that you generate, but liberal in the data that your receive.

Uuencoded data always starts with a begin line and continues until the end line. Encoded data starts
on the line following the begin. Immediately before the end line, there must be a single empty line (see
below).

begin mode filename
. . . encoded data . . .
“empty” line
end

A.1.1 The begin Line

The begin line starts with the word begin in the first column. It is followed, all on the same line, by the
mode and the filename.

mode is a three- or four-digit octal number, describing the access permissions of the target file. This
mode value is the same as used with the Unix chmod command and by the open system call. Each of the
three digits is a binary or of the values 4 (read permission), 2 (write permission) and 1 (execute permission).
The first digit gives the user’s permissions, the second one the permissions for the group the user is in, and
the third digit describes everyone else’s permissions. On DOS or other systems with only a limited concept
of file permissions, only the first digit should be evaluated. If the “2” bit is not set, the resulting file should
be read-only, the “1” bit should be set for COM and EXE files. Common values are 644 or 755.

filename is the name of the file. The name should be without any directory information.

A.1.2 Encoded Data

The basic version of uencoding simply uses the ASCII characters 32-95 for encoding the 64 values of a
three in for encoding. An exception12 is the value 0, which would normally map into the space character
(ASCII 32). To prevent problems with mailers that strip space characters at the beginning or end of the
line, character 96 “ ‘ ” is used instead. The encoding table is shown in table 2.

Each line of uuencoded data is prefixed, in the first column, with the encoded number of encoded octets
on this line. The most common prefix that you’ll see is ‘M’. By looking up ‘M’ in table 2, we see that it
represents the number 45. Therefore, this prefix means that the line contains 45 octets (which are encoded
into 60

�)�% � , �) � plain-text characters).
In uuencoding, each line has the same length, normally, the length (excluding the end of line character)

is 61. Only the last line of encoded data may be shorter.
If the input data is not a multiple of three octets long, the last triple is filled up with (one or two) nulls.

The decoder can determine the number of octets that are to go into the output file from the prefix.
12. . . that is not always respected by old encoders

25

A.1.3 The Empty Line

After the last line of data, there must be an empty line, which must be a valid encoded line containing no
encoded data. This is achieved by having a line with the single character “ ‘ ” on it (which is the prefix that
encodes the value of 0 octets).

A.1.4 The end Line

The encoded file is then ended with a line consisting of the word end.

A.1.5 Splitting Files

Uuencoding does not describe a mechanism for splitting a file into two or more messages for separate
mailing or posting. Usually, the encoded file is simply split into parts of more or less equal line count13.
Before the age of smart decoders, the recipient had to manually concatenate the parts and remove the
headers in between, because the headers of mail messages might just be valid uuencoded data lines, thus
potentially corrupting the data.

A.1.6 Variants of Uuencoding

There are many variations of the above rules which must be taken into account in a decoder program. Here
are the most frequent:

� Many old encoders do not pay attention to the special rule of encoding the 0 value, and encode it into
a space character instead of the “ ‘ ” character. This is not an “error,” but rather a potential problem
when mailing or posting the file.

� Some encoders add a 62nd character to each encoded line: sometimes a character looping from “a”
to “z” over and over again. This technique could be used to detect missing lines, but confuses some
decoders.

� If the length of the input file is not a multiple of three, some encoders omit the “unnecessary” char-
acters at the end of the last data line.

� Sometimes, the “empty” data line at the end is omitted, and at other times, the line is just completely
empty (without the “ ‘ ”).

There is also some confusion how to properly terminate a line. Most encoders simply use the convention
of the local system (DOS encoders using CRLF, Unix encoders using LF, Mac encoders using CR), but with
respect to the MIME standard, the encoding library uses CRLF on all systems. This causes a slight problem
with some Unix decoders, which look for “end” followed directly by LF (as four characters in total). Such
programs report “end not found”, but nevertheless decode the file correctly.

A.1.7 Example

This is what our sample text looks like as uuencoded data:

begin 600 test.txt
M5&AI<R!I<R!A(’1E<W0@9FEL92!F;W(@:6QL=7-T<F%T:6YG(’1H92!V87)I
M;W5S"F5N8V]D:6YG(&UE=&AO9’,N($QE="=S(&UA:V4@=&AI<R!T97AT(&QO
M;F=E<B!T:&%N"C4W(&)Y=&5S(’1O(’=R87‘@;&EN97,@=VET:"!"87-E-C0@
E9&%T82P@=&]O+@I’<F5E=&EN9W,L($9R86YK(%!I;&AO9F5R"@‘‘
‘
end

13Of course, encoded files must be split on line boundaries instead of at a fixed byte count.

26

Data Value +0 +1 +2 +3 +4 +5 +6 +7

0 + - 0 1 2 3 4 5
8 6 7 8 9 A B C D

16 E F G H I J K L
24 M N O P Q R S T
32 U V W X Y Z a b
40 c d e f g h i j
48 k l m n o p q r
56 s t u v w x y z

Table 3: Encoding Table for Xxencoding

Data Value +0 +1 +2 +3 +4 +5 +6 +7

0 A B C D E F G H
8 I J K L M V O P

16 Q R S T U V W X
24 Y Z a b c d e f
32 g h i j k l m n
40 o p q r s t u v
48 w x y z 0 1 2 3
56 4 5 6 7 8 9 + /

Table 4: Encoding Table for Base64 Encoding

A.2 Xxencoding

The xxencoding method was conceived shortly after the initial use of uuencoding. The first implementa-
tions of uuencoding did not realize the potential problem of using the space character for encoding data.
Before this mistake was workarounded with the special case, another author used a different charset for
encoding, composed of characters available on any system.

Xxencoding is absolutely identical to uuencoding with the difference of using a different mapping of
data values into printable characters (table 3). Instead of ‘M’, a normal-sized xxencoded line is prefixed
by ‘h’ (note that ‘h’ encodes 45, just as ‘M’ in uuencoding). The empty data line at the end consists of a
single ‘+’ character. Our sample file looks like the following:

begin 600 test.txt
hJ4VdQm-dQm-V65FZQrEUNaZgNG-aPr6UOKlgRLBoQa3oOKtb65FcNG-qML7d
hPrJn0aJiMqxYOKtb64pZR4VjN5Ai62lZR0Rn64pVOqIUR4VdQm-oNLVo64lj
hPaRZQW-oO43i0XIr647tR4Jn65Fj65RmML+UP4ZiNLAURqZoO0-0MLBZBXEU
ZN43oMGkUR4xj9Ud5QaJZR4ZiNrAg62NmMKtf63-dP4VjNaJm0U++
+
end

A.3 Base64 encoding

Base 64 is part of the MIME (Multipurpose Internet Mail Extensions) standard, described in [RFC1521],
section 5.2. Sometimes, it is incorrectly referred to as “MIME encoding”; however, the MIME documents
specify much more than just how to encode binary data. It defines a complete framework for attachments
within E-Mails. Being part of a widely accepted standard, Base64 has the advantage of being the best-
specified type of encoding.

The general concept of three-in-four encoding is the same as with the previous two types, just another
new character table to represent the values needs to be introduced (table 4). Note that this table differs from
the xxencoding table only in a single character (‘/’ versus ‘-’). If a line of encoding does not feature either
character, it may be difficult to tell which encoding is used on the line.

27

Data Value +0 +1 +2 +3 +4 +5 +6 +7

0 ! ” # $ % & ’ (
8) * + , - 0 1 2

16 3 4 5 6 8 9 @ A
24 B C D E F G H I
32 J K L M N P Q R
40 S T U V X Y Z [
48 ‘ a b c d e f h
56 i j k l m p q r

Table 5: Encoding Table for BinHex Encoding

The Base64 encoding does not have “begin” and “end” lines; such a concept is not needed, because the
framework of a MIME message defines the beginning and end of a part. The encoded data is defined to be
a “stream” of characters, and the decoder is supposed to ignore any “illegal” characters in the stream (such
as line breaks or other whitespace). Each line must be shorter than 80 characters and terminated with a
CRLF sequence. No particular line length is enforced, but most implementations encode 57 octets into 76
encoded characters. Theoretically, a line might hold 79 characters, although this would violate the rule of
thumb that the line length is a multiple of four (therefore encoding an integral number of octets).14

The end-of-file handling if the input data has not a multiple of three octets is slightly different in Base64
encoding than it is in uuencoding. If one octet is left at the end of the input stream, the data is padded with
4 zero bits (giving a total of 12 bits) and encoded into two characters. After that, two equal signs ‘=’ are
written to complete the four character sequence. If two octets are left, the data is padded with 2 zero bits
(giving a total of 18 bits), and encoded into three characters, after which a single equal sign ‘=’ is written.

Here’s our sample file in Base64. Note that this text is only the encoded data. It is not a valid MIME
message. Without the required framework, no proper MIME software will read it.

VGhpcyBpcyBhIHRlc3QgZmlsZSBmb3IgaWxsdXN0cmF0aW5nIHRoZSB2YXJpb3VzCmVuY29kaW5n
IG1ldGhvZHMuIExldCdzIG1ha2UgdGhpcyB0ZXh0IGxvbmdlciB0aGFuCjU3IGJ5dGVzIHRvIHdy
YXAgbGluZXMgd2l0aCBCYXNlNjQgZGF0YSwgdG9vLgpHcmVldGluZ3MsIEZyYW5rIFBpbGhvZmVy
Cg==

For a more elaborate documentation of Base64 encoding and details of the MIME framework, I suggest
reading [RFC1521].

The MIME standard also defines a way to split a message into multiple parts so that re-assembly of the
parts on the remote end is easily possible. For details, see section 7.3.2, “The Message/Partial subtype” of
the standard.

A.4 BinHex encoding

The BinHex encoding originates from the Macintosh environment, and it takes the special properties of a
Macintosh file into account. There, a file has two parts or “forks”: the “resource” fork holds machine code,
and the “data” fork holds arbitrary data. For files from other systems, the data fork is usually empty.

I have not found a “definitive” definition of the format. My knowledge is based on two descriptions
I found, one from Yves Lempereur and another from Peter Lewis. A similar description can be found in
[RFC1741].

A BinHex file is a stream of characters, beginning and ending with a colon ‘:’; intermediate line breaks
are to be ignored by the decoder. Each line but the last should be exactly 64 characters in length. The
last line may be shorter, and in a special case can also be 65 characters long. The trailing colon must not
stand alone, so if the input data ends on an output line boundary, the colon is appended to this line as 65th
character. Thus a BinHex begins with a colon in the first column and ends with a colon not in the first
column.

14Yes, there are files violating this assumption.

28

Compressed Data Uncompressed Data

00 11 22 33 44 55 01 00 11 22 33 44 55
11 22 90 04 33 01 11 22 22 22 22 33
11 22 90 00 33 44 01 11 22 90 33 44
2B 90 00 90 04 55 01 2B 90 90 90 90 55

Table 6: BinHex RLE decoding

n Name 0 Type Auth Dlen Rlen

n 1 4 4 2 4 4 2
Header
Section

1

HC

2
Data

Section
Data Fork

Dlen

DC

2
Resource

Section
Resource Fork

Rlen

RC

Flag

Figure 5: BinHex file structure

The line before the beginning of encoded data (before the initial ‘:’) should contain the following
verbatim text:15

(This file must be converted with BinHex 4.0)

BinHex is another three-in-four encoding, and not surprisingly, another different character table is used
(table 5). The documentation does not explicitely mention what is supposed to happen if the original input
data does not have a multiple of three octets. But from reading between the lines, it looks like “unnecessary”
characters (those that would result in equal signs in Base64 encoding) are not printed.

The encoded characters decode into a RLE-compressed bytestream, which must be handled in the
next step (of course, decoding and decompressing are usually handled at the same time). A Run Length
Encoding simply replaces multiple subsequent occurrences of one octet are replaced by the character, a
special marker, and the repetition count. BinHex uses the marker 0x90 (octal 0220, decimal 128). The
octet sequence 0xff 0x90 0x04 would decompress into four times 0xff. If the marker itself occurs, it
must be “escaped” by the special sequence 0x90 0x00 (the marker with a repetition count of 0). Table 6
shows four more examples. Note the last example, where the marker itself is repeated.

The decompression results in a data stream which consists of three parts, the header section, the data
fork and the resource fork. Figure 5 shows how the sections are composed. The numbers above each item
indicate its size in octets. The header has the following items:

n The length of the filename in octets. This is a single octet, so the maximum length of a filename is 255.

Name The filename, n octets in length. The length does not include the final nullbyte (which is actually
the next item).16

0 This single nullbyte terminates the previous filename.

Type The Macintosh file type.

Auth The Macintosh “creator”, the program which wrote the original file. This and the previous item are
used to start the right program to edit or display a file. I have no idea what common values are.

Flags Macintosh file flags. No idea what they are.
15In fact, this text is required by certain decoding software.
16The Filename may contain certain characters that are invalid on MS-DOS systems, like space characters

29

Dlen The number of octets in the data fork.

Rlen The number of octets in the resource fork.

HC CRC checksum of the header data.

After the header, at offset
�324/+/

, follow the Dlen octets of the data fork and a CRC checksum of the
data fork (offset

�527698:���"2;/+/
), then Rlen octets of the resource fork (offset

�<2=698>���"27/)) and a CRC
checksum of the resource fork (offset

�92=698>���52=?@8:���"2;/)). Note that the CRCs are present even if the
forks are empty.

The three CRC checksums are calculated as described in the following text, taken from Peter Lewis’
description:

BinHex 4.0 uses a 16-bit CRC with a 0x1021 seed. The general algorithm is to take data 1 bit
at a time and process it through the following:

1. Take the old CRC (use 0x0000 if there is no previous CRC) and shift it to the left by 1.

2. Put the new data bit in the least significant position (right bit).

3. If the bit shifted out in (1) was a 1 then xor the CRC with 0x1021.

4. Loop back to (1) until all the data has been processed.

This is the sample file in BinHex. However, the encoder I used replaced the LF characters from the
original file with CR characters. It probably noticed that the input file was plain text and reformatted it to
Mac-style text, but I consider this a software bug. The assigned filename is “test.txt”.

(This file must be converted with BinHex 4.0)
:#&4&8e3Z9&K8!&4&@&4dG(Kd!!!!!!#X!!!!!+3j9’KTFb"TFb"K)(4PFh3JCQP
XC5"QEh)JD@aXGA0dFQ&dD@jR)(4SC5"fBA*TEh9c$@9ZBfpND@jR)’ePG’K[C(-
Z)%aPG#Gc)’eKDf8JG’KTFb"dCAKd)’a[EQGPFL"dD’&Z$68h)’*jG’9c)(4[)(G
bBA!JE’PZCA-JGfPdD#"#BA0P0M3JC’&dB5‘JG’p[,Je(FQ9PG’PZCh-X)%CbB@j
V)&"TE’K[CQ9b$B0A!!!!:

A.5 Quoted-Printable

The Quoted-Printable encoding is, like Base64, part of the MIME standard, described in [RFC1521]. It is
not suitable for encoding arbitrary binary data, but is intended for “data that largely consists of octets that
correspond to printable characters”. It is widely in use in countries with an extended character set, where
characters like the German umlauts ‘ä’ or ‘ß’ are represented by non-ASCII characters with the highest bit
set.

The essence of the encoding is that arbitrary octets can be represented by an equal sign ‘=’ followed by
two hexadecimal digits. The equal sign itself, for example, is encoded as “=3D”.

Quoted-Printable enforces a maximum line length of 76 characters. Longer lines can be wrapped using
soft line breaks. If the last character of an encoded line is an equal sign, the following line break is to be
ignored.

It would indeed be possible to transfer arbitrary binary data using this encoding, but care must be taken
with line breaks, which are converted from native format on the sender’s side and back into native format
on the recipient’s side. However, the native representations may differ. But this alternative is hardly worth
considering, since for arbitrary data, quoted-printable is substantially less effective than Base64.

Please refer to the original document, [RFC1521], for a complete discussion of the encoding.
Here is how the example file could look like in Quoted-Printable encoding.

This is a test file for =
illustrating the various
encoding methods=2e=20=
Let=27s make this text=
longer than

30

=357 bytes to wrap lines =
with Base64 data=2c too=2e
Greetings=2c Frank Pilhofer

31

