
© 2004 Mercury Computer Systems, Inc.

Supporting SCA 
Applications in a 
Lightweight CCM 

Environment

Supporting SCA 
Applications in a 
Lightweight CCM 

Environment
Frank Pilhofer
fp@mc.com



2© 2004 Mercury Computer Systems, Inc.

ContentsContents

● SCA Evolution
◗ Current state of the SCA
◗ Leveraging commercial technologies
◗ A scenario for a future SCA

● Migrating Waveforms
◗ Metadata
◗ Resources

● Summary



SCA EvolutionSCA Evolution



4© 2004 Mercury Computer Systems, Inc.

SCA HistorySCA History

● SCA pioneered component-based 
development in embedded systems
◗ Branched from CCM during finalization
◗ Added important concepts of its own

● OMG specifications are catching up, 
exceeding SCA functionality
◗ Lightweight CCM, Streams for CCM, Light-

weight Log, Lightweight Services, D+C

● Combine OMG and JTRS efforts in 
component-based embedded 
system development



5© 2004 Mercury Computer Systems, Inc.

SCA, OMG TimelineSCA, OMG Timeline

CCM Lightweight
Logging

Lightweight
Services

Lightweight
CCM

D+C

OMG adopted
Specifications

SCA

● Leverage OMG standardization 
efforts

CORBA



6© 2004 Mercury Computer Systems, Inc.

COTS SCACOTS SCA

● Leverage existing specifications
● Increase COTS Content in SCA

◗ Commercial, not DOD or SDR specific

● Focus on Software Radio domain-
specific aspects

Lightweight
Services

Lightweight
CCM

Deployment
and Configuration

Lightweight
Logging

SCA
Personality

COTS Content
Future SCA

Waveform
Interfaces



7© 2004 Mercury Computer Systems, Inc.

SCA EvolutionSCA Evolution

● Future SCA Assumptions:
◗ SCA Resources become CCM Components

• Commercially available Component Model
• Make use of future extensions, e.g., Streams for 

CCM
◗ Use of D+C metadata and infrastructure for 

the deployment of applications
• More powerful assembly and deployment model

◗ No changes to Core Framework interfaces

● Future SCA Impact:
◗ Container/Component API changes
◗ Metadata (SCA Domain Profile) changes



8© 2004 Mercury Computer Systems, Inc.

SCA Evolution StudySCA Evolution Study

● Premise
◗ SCA Evolution by embracing commercial 

standards is beneficial for both JTRS and 
OMG

● Adressing Evolution Issues
◗ Mercury project to study and resolve 

evolution and migration issues
◗ Idea: study migration now, so that it will be 

feasible and not troublesome later
◗ Resulted in whitepapers and this 

presentation



9© 2004 Mercury Computer Systems, Inc.

SCA Evolution IssuesSCA Evolution Issues

● Investments into SCA-based 
infrastructure must be protected
◗ Core Framework implementations
◗ Applications (Waveforms)
◗ Clients (HCIs)
◗ Devices

● Application and HCI investments 
most critical
◗ Limited set of “off the shelf” Core Framework 

implementations and Devices



Migrating 
Waveforms
Migrating 

Waveforms



11© 2004 Mercury Computer Systems, Inc.

Migrating WaveformsMigrating Waveforms

● Goal:
◗ Run existing SCA waveforms, unmodified, in 

a (Lightweight) CCM- and D+C-based 
environment

● Approach:
◗ Automatic transformation of application 

metadata, so that application can be 
deployed by COTS (not SCA or SDR specific) 
D+C based infrastructure

◗ Automatic generation of implementation 
wrappers, so that resources can be executed 
as components in a CCM Container



Application 
Metadata 

Transformation

Application 
Metadata 

Transformation



13© 2004 Mercury Computer Systems, Inc.

Metadata TransformationMetadata Transformation

● Strong correlation between SCA 
Domain Profile and D+C meta-data
◗ Transformation is well-defined (by design)



14© 2004 Mercury Computer Systems, Inc.

Assembly MetadataAssembly Metadata

● SCA Software Assembly Descriptor 
is transformed to a D+C Component 
Package, containing a single 
assembly-based implementation



15© 2004 Mercury Computer Systems, Inc.

Assembly Metadata DetailAssembly Metadata Detail



16© 2004 Mercury Computer Systems, Inc.

Metadata ComparisonMetadata Comparison

● Mercury whitepaper compared SCA 
vs. D+C metadata:
◗ D+C metadata is superset of SCA
◗ In the process, discovered and resolved a 

few issues
• E.g., “devicethatloadedthiscomponentref” resolved 

via a port delegation mechanism

● All SCA application metadata can 
be converted to D+C application 
metadata



Application 
Implementation 

Wrappers

Application 
Implementation 

Wrappers



18© 2004 Mercury Computer Systems, Inc.

SCA Resource WrapperSCA Resource Wrapper

● Wrap SCA Resources
as a CCM Component
◗ So that they can be

deployed in a CCM
Container

◗ Wrapper acts as CCM
component, delegating all behavior
to Resource implementation

● No performance impact
◗ Involved in connection setup, not in data transport

● Can be generated automatically
◗ Using port and property names from Software 

Component Descriptor (CCD)

SCA Resource

Component
Wrapper



19© 2004 Mercury Computer Systems, Inc.

“Device” Alternative“Device” Alternative

● Alternative: “Executable Device” 
compatible Node Managers
◗ SCA Executable Device implementing D+C 

Node Manager interfaces
◗ Capable of running Resources “natively” (in 

addition to CCM components)
◗ Disadvantage: requires modification of many 

Node Managers, becoming SCA specific

ExecutableDevice
(from CF) N odeManager

(from Execution)

<<Manager>>

R esource Node 
Manager



SummarySummary



21© 2004 Mercury Computer Systems, Inc.

SummarySummary
● Adopting OMG specifications within 

the SCA has benefits
◗ Greater standards base and implementation 

choice
◗ More powerful assembly and deployment 

model
◗ Combined efforts for future evolution of 

component-based development
◗ Make SCA software radio specific -- no need 

to define a generic infrastructure

● Migration issues can be overcome
◗ SCA Applications can be migrated to D+C 

using a one-time, automated process


