Enabling

Component-based
Applications In

Embedded Systems

Frank Pilhofer
fp@mc.com

The Ultimate Performance Machine

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Contents

« Component-based Development
o Lightweight CCM

o Deployment and Configuration of

Component-based Applications
» Separation of Concerns

» Four Phases of Deployment

» Deployment Actors

» Component Model

o Case Study: SCA Evolution

Component-based
Development

The Ultimate Performance Machine

Components

e« “A component represents a
modular part of a system that
encapsulates its contents and
whose manifestation Is replaceable

within its environment” — [UML]

» “Modular:” building block
» “Encapsulates contents:” black box
» “Replaceable:” implementation vs. interface

© 2003 Mercur y Computer Systems , Inc. 4

Components (2)

« A component defines its

behavior in terms of rovided Interfaces
provided and required [\
Interfaces. - e ~
o« Conformance iIs defined by
thes_e prqvided and N - .
required interfaces. Y, Component
o Provided and required Required Interface

Interfaces: “Ports”

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Components (3)

{
4 R - /
4)

oy °

\ /

e Larger pieces of a system’s
functionality may be assembled by
reusing components as parts in an
assembly, and wiring together their
required and provided interfaces.

}

_ /

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Meiiy™ Hierarehical Assemblies

Subcomponents

_.

Encompassing

Component

o /

o« Assemblies are components!

» Assemblies “implement” a specific
component interface

» Mapping of component ports and properties
to subcomponents

» Assembly can then be reused as a
component

© 2003 Mercury Computer Systems, Inc. 7

Lightweight
CCM

The Ultimate Performance Machine

Lightweight CCM

o Original CCM

» Oriented towards multi-tier architectures

» Based on Enterprise Java Beans
e plus ports!

e Lightweight CCM

» Upwards compatible subset of CCM
» Retains component model
* Ports, Assemblys

» Removes “business components” features
» Persistence, Transactions, Introspection

» Reduced footprint, more suitable for
embedded systems

© 2003 Mercury Computer Systems, Inc. 9

Lightweight CCM (2)

o Uses “Deployment and

Configuration” specification

» Replaces CCM'’s “Packaging and
Deployment” chapter

e Supports ...
» Hierarchical assemblies
» Resource management
» QoS characteristics
» Automated deployment

» Vendor-independent deployment
Infrastructure

© 2003 Mercur y Computer Systems , Inc. 10

Deployment and
Configuration of
Component-based

Applications

HD+C”

The Ultimate Performance Machine

O S T

Properties,
Capabilities,
Resources

Connection
Requirements

Target-inde-
pendent Model

Properties,
Capabilities,
Resources

lmple-
menta-

Artifact
Requirements
e.g. OS, memory

© 2003 Mercury Computer Systems, Inc. 12

Deployment ldeas (2)

Well-defined
Interfaces

(Meta)Model(s)
for Depl. & Conf.

Deployment

: Target
rgquwem_en Infrastructure
esciﬁlon specifigation

f\ —_—

Infrasructure
support

© 2003 Mercury Computer Systems, Inc. 13

Deployment |ldeas (3)

« Component Packages

» ZIP files with artifacts and XML metadata

» May contain alternative implementations
* For different hardware, and/or
 With different QoS characteristics

» Reusable by other packages
o Hierarchical Assemblies

e Resource model

» Implementations express requirements
« CPU, OS, Devices, communication bandwidth

» Target Domain expresses resources
» Well-defined matching process

© 2003 Mercury Computer Systems, Inc. 14

D+C
Deployment Model

The Ultimate Performance Machine

Separation of Concerns

e Three Model Slices

» Component Model

 Metadata to describe component-based
applications

 “Repository Manager” interface for installing,
maintaining and retrieving Component Packages
» Target Model
 Metadata to describe available resources
 “Target Manager” interface for accessing and
tracking resources
» Execution Model
 Metadata to describe “Deployment Plan”

o “Execution Manager” interface to execute
applications according to plan

© 2003 Mercury Computer Systems, Inc. 16

Compliance Points

o Four independent compliance
points

» Repository Manager, Target Manager,
Execution Manager
» Distinct functionality
 Expected to be part of a COTS deployment suite

» Node Manager

 Responsible for intra-node deployment, as directed
by the Execution Manager

 Hardware, OS, ORB specific
 Implemented by node vendor with little effort

« Each “Manager” can be replaced
separately

© 2003 Mercury Computer Systems, Inc. 17

Phases of Deployment

o Four phases of Deployment

» Installation
 Package is installed in the Repository

» Planning
« Component requirements are matched against
available resources, resulting in a Deployment Plan
» Preparation, Launch
 Resources are allocated
o Artifacts are loaded onto nodes

« Components are instantiated, interconnected, and
started

o Separation between preparation and launch left
open, to allow for a wide range of options (preload,
early instantiation vs. late loading)

© 2003 Mercury Computer Systems, Inc. 18

Planning

e Planning involves ...

» Requirement vs. Resource matching
» Selecting acceptable implementations
» Mapping implementations to Nodes

» Results in Deployment Plan: A “what goes
where” script, with configuration

e Can be done ...

» Online
» Based on “live” resource data
 For immediate preparation and launch

» Offline

e Based on a known set of available resources
 For storage and later use / reuse

© 2003 Mercury Computer Systems, Inc. 19

D+C
Component Model

The Ultimate Performance Machine

MUY~ Compenent Data Model

+dependsOn

<<Description>> 0.1 <<Deweloper>> *

PackageConfiguration ImplementationArtifactDescription

+specializedConfig

{xor} ﬁ/ — —

+primaryArtifact /| 1..*

- <<Assembler>> <<Deweloper>>
ComponentAssembly Description MonolithicimplementationDescription
+assemblyimpl +monolithicimpl
0.1 0..1
- | {xor} -
+basePackage 0..1

1..* \ ’

<<Packager>> +implementation <<Implementer>>
ComponentP ackageDescription 1% ComponentimplementationDescription

{same interface or ﬁ
T

base type}
A
1 <<Specifier>> 1
+realizes ComponentinterfaceDescription +implements

© 2003 Mercury Computer Systems, Inc. 21

Component Package

o Package Configuration

» Configures an application’s properties,
Independent of implementation choice

» Selects among alternative implementations
 E.g., “Latency less than 50ms”
« Component Package Description

» Describes one or more alternative
Implementations
 E.g., for Windows, Linux, Java, FPGA ...

« Component Implementation
» Assembly-based or Monolithic
» Describes QoS characteristics

© 2003 Mercur y Computer Systems , Inc. 22

MrEaRy Component Implementation

o Monolithic implementation

» Usually compiled code
» Describes hardware requirements

o« Assembly-based implementation

» Set of interconnected subcomponents
* Instantiates subcomponents from Packages
 “Sub-" packages may be included or referenced

» Describes interconnection requirements
(bandwidth)

» Expresses QoS requirements on
subcomponents, to satisfy its own

» Hardware-independent

© 2003 Mercury Computer Systems, Inc. 23

D+C and
Embedded Systems

The Ultimate Performance Machine

Mf/:.c‘u&rD+C and Embedded Systems

o Limited XML Parsing

» Only the Repository Manager needs an XML
parser, to read “off-line” packages

» Other information is passed “on-line”, using
IDL-defined data structures

e Central Services

» Repository Manager, Target Manager,
Execution Manager are singleton services

» Node Managers can be small, no
“Intelligence” necessary

o Planning done locally
» No Iinteraction with nodes

© 2003 Mercury Computer Systems, Inc. 25

MR Round-trip Minimization

e Livrimare
Pentvrmvince Al

o Round-trips incur latency
» Avoid sequential, synchronous invocations

e Minimize round-trips

» Only three round-trips between Execution
Manager and Node Managers during
application launch:

e First round-trip: node managers return “provided”
references for each component

e Second round-trip: execution manager sends
references to “uses” ports for each component

* Third round-trip: “start” signal

» These steps can be parallelized

« EM sends invocations in parallel, then waits for all
replies (e.g., using AMI)

© 2003 Mercury Computer Systems, Inc. 26

Case Study:
SCA Evolution

The Ultimate Performance Machine

SCA Introduction

o Software Communications

Architecture (current version 2.2.1)

» CORBA-based component-oriented
middleware
« “Resource” components
 Assemblies of interconnected resources

» XML metadata similar to CCM
» Basic hardware capacity model

» Automated deployment
* Inspired D+C effort

« Compliance mandatory for future
JTRS Software Radio systems

© 2003 Mercur y Computer Systems , Inc. 28

SCA History

« SCA pioneered component-based

development in embedded systems
» Branched from CCM during finalization
» Added important concepts of its own

« OMG specifications are catching up,

exceeding SCA functionality

» Lightweight CCM, Streams for CCM, Light-
weight Log, Lightweight Services, D+C

» Combine efforts in component-based
embedded system development

© 2003 Mercur y Computer Systems , Inc. 29

SCA, OMG Timeline

o Leverage OMG standardization
efforts

SCA

Lightweight
CCM

Lightweight

OMG adopted

Lightweight Specifications

Services D+C

© 2003 Mercur y Computer Systems , Inc. 30

COTS SCA

SCA Lightweight Deployment
Personality Services and Configuration
Waveform Lightweight Lightweight
Interfaces CCM Logging
= : 5
Future SCA COTS Content

o Leverage existing specifications
e Increase COTS Content in SCA

o Focus on Software Radio domain-
specific aspects

© 2003 Mercur y Computer Systems , Inc. 31

Summary

The Ultimate Performance Machine

Summary

e Lightweight CCM and D+C

» Evolution of original CCM

» Enable distributed, component-based
Applications [0 not only in embedded
systems

» E.g., applicable to Software Radio (SCA)

o Status
» Adopted OMG specifications
» Currently being finalized
» Implementations expected later this year

© 2003 Mercur y Computer Systems , Inc. 33

