
© 2003 Mercury Computer Systems, Inc.

Enabling 
Component-based 

Applications in 
Embedded Systems

Enabling 
Component-based 

Applications in 
Embedded Systems

Frank Pilhofer
fp@mc.com



2© 2003 Mercury Computer Systems, Inc.

ContentsContents

● Component-based Development
● Lightweight CCM
● Deployment and Configuration of 

Component-based Applications
◗ Separation of Concerns
◗ Four Phases of Deployment
◗ Deployment Actors
◗ Component Model

● Case Study: SCA Evolution



Component-based 
Development

Component-based 
Development



4© 2003 Mercury Computer Systems, Inc.

ComponentsComponents

● “A component represents a 
modular part of a system that 
encapsulates its contents and 
whose manifestation is replaceable 
within its environment” – [UML]
◗ “Modular:” building block
◗ “Encapsulates contents:” black box
◗ “Replaceable:” implementation vs. interface



5© 2003 Mercury Computer Systems, Inc.

Components (2)Components (2)

● A component defines its 
behavior in terms of 
provided and required 
interfaces.

● Conformance is defined by 
these provided and 
required interfaces.

● Provided and required 
interfaces: “Ports”

Required Interface

Provided Interfaces

Component



6© 2003 Mercury Computer Systems, Inc.

Components (3)Components (3)

● Larger pieces of a system’s 
functionality may be assembled by 
reusing components as parts in an 
assembly, and wiring together their 
required and provided interfaces.



7© 2003 Mercury Computer Systems, Inc.

Hierarchical AssembliesHierarchical Assemblies

● Assemblies are components!
◗ Assemblies “implement” a specific 

component interface
◗ Mapping of component ports and properties 

to subcomponents
◗ Assembly can then be reused as a 

component

Subcomponents

Encompassing

Component



Lightweight
CCM

Lightweight
CCM



9© 2003 Mercury Computer Systems, Inc.

Lightweight CCMLightweight CCM

● Original CCM
◗ Oriented towards multi-tier architectures 
◗ Based on Enterprise Java Beans

• plus ports!

● Lightweight CCM
◗ Upwards compatible subset of CCM
◗ Retains component model

• Ports, Assemblys
◗ Removes “business components” features

• Persistence, Transactions, Introspection
◗ Reduced footprint, more suitable for 

embedded systems



10© 2003 Mercury Computer Systems, Inc.

Lightweight CCM (2)Lightweight CCM (2)

● Uses “Deployment and 
Configuration” specification
◗ Replaces CCM’s “Packaging and 

Deployment” chapter

● Supports …
◗ Hierarchical assemblies
◗ Resource management
◗ QoS characteristics
◗ Automated deployment
◗ Vendor-independent deployment 

infrastructure



Deployment and 
Configuration of 

Component-based 
Applications

Deployment and 
Configuration of 

Component-based 
Applications

“D+C”



12© 2003 Mercury Computer Systems, Inc.

Deployment IdeasDeployment Ideas

In
fr

as
tr

uc
tu

re
 1

In
fr

as
tr

uc
tu

re
2

N
od

e1
N

od
e2

D
ep

lo
ym

en
t 1

N
od

e2

N
od

e1

N
od

e4

D
ep

lo
ym

en
t 3

N
od

e3

N
od

e1
N

od
e2

D
ep

lo
ym

en
t 2

C1C1

C3C3 C4C4

C2C2
T

ar
ge

t-
in

de
-

pe
nd

en
t M

od
el

Fulfilled 
Requirements

Properties,
Capabilities,
Resources

Properties,
Capabilities,
Resources

Im
pl

e-
m

en
ta

-
tio

nsA2
A6

A5

A3 A4

A1

Connection
Requirements
e.g. QoS requ.

Artifact
Requirements

e.g. OS, memory

C1C1

C3C3 C4C4

C2C2

C1C1

C3C3 C4C4

C2C2

C2C2

C1C1 C3C3

C4C4

A2

A1

A4

A5A6



13© 2003 Mercury Computer Systems, Inc.

Deployment Ideas (2)Deployment Ideas (2)

Deployment
requirement
description

Target 
infrastructure
specification

Well-defined 
Interfaces

Exchange
Format(s)

SW Vendor Customer

Infrastructure 
support

(Meta)Model(s)
for Depl. & Conf.



14© 2003 Mercury Computer Systems, Inc.

Deployment Ideas (3)Deployment Ideas (3)

● Component Packages
◗ ZIP files with artifacts and XML metadata
◗ May contain alternative implementations

• For different hardware, and/or
• With different QoS characteristics

◗ Reusable by other packages

● Hierarchical Assemblies
● Resource model

◗ Implementations express requirements
• CPU, OS, Devices, communication bandwidth

◗ Target Domain expresses resources
◗ Well-defined matching process



D+C
Deployment Model

D+C
Deployment Model



16© 2003 Mercury Computer Systems, Inc.

Separation of ConcernsSeparation of Concerns

● Three Model Slices
◗ Component Model

• Metadata to describe component-based 
applications

• “Repository Manager” interface for installing, 
maintaining and retrieving Component Packages

◗ Target Model
• Metadata to describe available resources
• “Target Manager” interface for accessing and 

tracking resources
◗ Execution Model

• Metadata to describe “Deployment Plan”
• “Execution Manager” interface to execute 

applications according to plan



17© 2003 Mercury Computer Systems, Inc.

Compliance PointsCompliance Points

● Four independent compliance 
points
◗ Repository Manager, Target Manager, 

Execution Manager
• Distinct functionality
• Expected to be part of a COTS deployment suite

◗ Node Manager
• Responsible for intra-node deployment, as directed 

by the Execution Manager
• Hardware, OS, ORB specific
• Implemented by node vendor with little effort

● Each “Manager” can be replaced 
separately



18© 2003 Mercury Computer Systems, Inc.

Phases of DeploymentPhases of Deployment

● Four phases of Deployment
◗ Installation

• Package is installed in the Repository
◗ Planning

• Component requirements are matched against 
available resources, resulting in a Deployment Plan

◗ Preparation, Launch
• Resources are allocated
• Artifacts are loaded onto nodes
• Components are instantiated, interconnected, and 

started
• Separation between preparation and launch left 

open, to allow for a wide range of options (preload, 
early instantiation vs. late loading)



19© 2003 Mercury Computer Systems, Inc.

PlanningPlanning

● Planning involves …
◗ Requirement vs. Resource matching
◗ Selecting acceptable implementations
◗ Mapping implementations to Nodes
◗ Results in Deployment Plan: A “what goes 

where” script, with configuration

● Can be done …
◗ Online

• Based on “live” resource data
• For immediate preparation and launch

◗ Offline
• Based on a known set of available resources
• For storage and later use / reuse



D+C
Component Model

D+C
Component Model



21© 2003 Mercury Computer Systems, Inc.

Component Data ModelComponent Data Model

{sam e interface or 
base type}

{xor}

{xor}

PackageConfiguration
<<Description>> 0..1

+specializedConfig

0..1

ComponentA ssem bly Des cription
<<Assembler>>

ComponentP ackageDescription
<<Packager>>

1..*1..*0..1+basePackage 0..1

ComponentInterfaceDescription
<<Specifier>>1

+real izes

1

ComponentImplementationDescription
<<Im plementer>>

0..1
+assemblyImpl

0..1

1..*

+implementation

1..*

1

+implements

1

MonolithicImplementationDescription
<<Developer>>

0..1+monolithicImpl 0..1

ImplementationArtifactDescription
<<Developer>> *

+dependsOn

*

1..*+primaryArtifact 1..*



22© 2003 Mercury Computer Systems, Inc.

Component PackageComponent Package

● Package Configuration
◗ Configures an application’s properties, 

independent of implementation choice
◗ Selects among alternative implementations

• E.g., “Latency less than 50ms”

● Component Package Description
◗ Describes one or more alternative 

implementations
• E.g., for Windows, Linux, Java, FPGA …

● Component Implementation
◗ Assembly-based or Monolithic
◗ Describes QoS characteristics



23© 2003 Mercury Computer Systems, Inc.

Component ImplementationComponent Implementation

● Monolithic implementation
◗ Usually compiled code
◗ Describes hardware requirements

● Assembly-based implementation
◗ Set of interconnected subcomponents

• Instantiates subcomponents from Packages
• “Sub-” packages may be included or referenced

◗ Describes interconnection requirements 
(bandwidth)

◗ Expresses QoS requirements on 
subcomponents, to satisfy its own

◗ Hardware-independent



D+C and
Embedded Systems

D+C and
Embedded Systems



25© 2003 Mercury Computer Systems, Inc.

D+C and Embedded SystemsD+C and Embedded Systems

● Limited XML Parsing
◗ Only the Repository Manager needs an XML 

parser, to read “off-line” packages
◗ Other information is passed “on-line”, using 

IDL-defined data structures

● Central Services
◗ Repository Manager, Target Manager, 

Execution Manager are singleton services
◗ Node Managers can be small, no 

“intelligence” necessary

● Planning done locally
◗ No interaction with nodes



26© 2003 Mercury Computer Systems, Inc.

Round-trip MinimizationRound-trip Minimization
● Round-trips incur latency

◗ Avoid sequential, synchronous invocations

● Minimize round-trips
◗ Only three round-trips between Execution 

Manager and Node Managers during 
application launch:

• First round-trip: node managers return “provided” 
references for each component

• Second round-trip: execution manager sends 
references to “uses” ports for each component

• Third round-trip: “start” signal
◗ These steps can be parallelized

• EM sends invocations in parallel, then waits for all 
replies (e.g., using AMI)



Case Study:
SCA Evolution
Case Study:

SCA Evolution



28© 2003 Mercury Computer Systems, Inc.

SCA IntroductionSCA Introduction

● Software Communications 
Architecture (current version 2.2.1)
◗ CORBA-based component-oriented 

middleware
• “Resource” components
• Assemblies of interconnected resources

◗ XML metadata similar to CCM
◗ Basic hardware capacity model
◗ Automated deployment

• Inspired D+C effort

● Compliance mandatory for future 
JTRS Software Radio systems



29© 2003 Mercury Computer Systems, Inc.

SCA HistorySCA History

● SCA pioneered component-based 
development in embedded systems
◗ Branched from CCM during finalization
◗ Added important concepts of its own

● OMG specifications are catching up, 
exceeding SCA functionality
◗ Lightweight CCM, Streams for CCM, Light-

weight Log, Lightweight Services, D+C
◗ Combine efforts in component-based 

embedded system development



30© 2003 Mercury Computer Systems, Inc.

SCA, OMG TimelineSCA, OMG Timeline

CCM Lightweight
Logging

Lightweight
Services

Lightweight
CCM

D+C

OMG adopted
Specifications

SCA

● Leverage OMG standardization 
efforts

CORBA



31© 2003 Mercury Computer Systems, Inc.

COTS SCACOTS SCA

● Leverage existing specifications
● Increase COTS Content in SCA
● Focus on Software Radio domain-

specific aspects

Lightweight
Services

Lightweight
CCM

Deployment
and Configuration

Lightweight
Logging

SCA
Personality

COTS Content
Future SCA

Waveform
Interfaces



SummarySummary



33© 2003 Mercury Computer Systems, Inc.

SummarySummary

● Lightweight CCM and D+C
◗ Evolution of original CCM
◗ Enable distributed, component-based 

Applications  not only in embedded 
systems

◗ E.g., applicable to Software Radio (SCA)

● Status
◗ Adopted OMG specifications
◗ Currently being finalized
◗ Implementations expected later this year


