
Design and Implementation

of the Portable Object

Adapter

Frank Pilhofer
Universität Frankfurt

fp@informatik.uni-frankfurt.de



Object Adapters in CORBA

DII SII
Iface

DSI SSI OA

(Server)

ORB-

Implementation
Object-

Client

ORB Core

� Activation and deactivation of objects

� Generation of object references

� Synchronization

� Mapping of object references to
implementations

� Method invocations

1



Portable Object Adapter (POA)

� Clear distinction of the terms “object,” “object
reference,” and “servant”

� Explicit activation and deactivation of
objects

� Support for “virtual” Object References

� Transparent object activation upon first use

� Very dynamic through use of default
servants and servant managers

2



POA Architecture

Root POA

POA A POA B

POA C

Mana-
ger

A

Mana-
ger

B

� Hierarchical structure of many POAs, each with
its own set of “policies”

� “POA Managers” for Synchronization

3



Server-side View of Objects

POA

Active Object Map

Object Id #1

Object Id #2

Object Id #3

Servant #3Default Servant

Servant
Manager

Servant #1

Servant #2

Manager #1

� Each POA has its own table of active
servants

� Each servant is identified by one or many “ob-
ject ids” that it can serve

� In addition, a “default servant” or a
“servant manager” can be registered

4



Composition of Object References

CORBA::Object

Impl Name

POA Name

Object Id

contains

IP Address

Port number Identifies process within the host

Identifies host within the network

Identification transient / persistent

Identifies the object adapter within the process

Identifies the servant within the object adapter

� Contains all necessary information to
identify the responsible servant

� Only the Root POA is registered with the ORB
and dispatches invocations to the responsible
POA first

� The responsible POA identifies the
servant and performs the invocation

5



Example Server

#include "hello.h"

class Hello_impl : virtual public POA_Hello
{
public: void hello () {printf ("Hello World!\n");}
};

int main (int argc, char *argv[])
{
CORBA::ORB_var orb =
CORBA::ORB_init (argc, argv, "mico-local-

orb");

CORBA::Object_var poaobj =
orb->resolve_initial_references ("RootPOA");

PortableServer::POA_var poa =
PortableServer::POA::_narrow (poaobj);

PortableServer::POAManager_var mgr =
poa->the_POAManager();

Hello_impl * hello = new Hello_impl;

PortableServer::ObjectId_var oid =
poa->activate_object (hello);

CORBA::Object_var objref =
poa->servant_to_reference (hello);

mgr->activate ();
orb->run();

}

6



Persistent POAs

POA Mediator

ServerClient

� Persistent POAs require a permanently running
daemon

� Method invocations are relayed to the
active server

� Registration of persistent servers in
the Implementation Repository

� Mediator only replaces address
information in object reference,
no storage required

7



MICO and the POA

� POA fulfills its expectations:
well-specified, powerful, portable

� The POA is an object adapter like any other

� No modifications to the ORB
were necessary

� Modification of the IDL Compiler and
Mediator

� approx. 4000 lines of C++ source code

� Shipped with MICO since 2.2.0

� Documentation!

8


