Design and Implementation
of the Portable Object
Adapter

Frank Pilhofer
Universitat Frankfurt
fp@nformati k. uni -frankfurt. de

Object Adapters in CORBA

Object-
Client Implementation
(Server)
DII Sl ORB-| [DSl || SSI || gp
Iface
ORB Core

e Activation and deactivation of objects

e Generation of object references

e Synchronization

e Mapping of object references to
Implementations

e Method invocations

Portable Object Adapter (POA)

Clear distinction of the terms “object,” “object
reference,” and “servant”

Explicit activation and deactivation of
objects

Support for “virtual” Object References
Transparent object activation upon first use

Very dynamic through use of default
servants and servant managers

POA Architecture

)

ROOt POA |- »| Mana-
ger

POAA | POA B

v __________________ | Mana-
ger

POAC [-

e Hierarchical structure of many POAs, each with
Its own set of “policies”

e “POA Managers” for Synchronization

Server-side View of Objects

Active Object Map

Object 1d #1 Servant #1
Object Id#2 —|
> Servant #2
ObjectId#3 [|
Default Servant Servant #3
Servant Manager #1
POA Manager ag

e Each POA has its own table of active
servants

e Each servant is identified by one or many “ob-
ject ids” that it can serve

e In addition, a “default servant” or a
“servant manager’ can be registered

Composition of Object References

CORBA::Object

contains
IP Address Identifies host within the network
Port number Identifies process within the host
Impl Name Identification transient / persistent
POA Name Identifies the object adapter within the process
Object Id Identifies the servant within the object adapter

e Contains all necessary information to
identify the responsible servant

e Only the Root POA is registered with the ORB
and dispatches invocations to the responsible
POA first

e The responsible POA identifies the
servant and performs the invocation

Example Server

#i ncl ude "hell o. h"

class Hello inpl : virtual public POA Hello

{
public: void hello () {printf ("Hello Wrld!\n");}

}

int main (int argc, char *argv[])
{
CORBA: : ORB var orb =
CORBA: :ORB init (argc, argv, "mco-I|ocal -
orb");

CORBA: : Obj ect _var poaobj =
orb->resolve_initial _references ("Root POA");
Port abl eServer:: POA var poa =
Port abl eServer:: POA:: narrow (poaobj);
Port abl eServer: . POAManager _var ngr =
poa- >t he_POAManager () ;

Hello inpl * hello = new Hell o_i npl;

Port abl eServer::(bjectld var oid =
poa- >acti vate object (hello);

CORBA: : Obj ect _var objref =
poa- >servant _to_reference (hello);

ngr->activate ();
or b->run();

Persistent POAS

N VR
T~
Client | / Server
— —
1

POA Mediator

Persistent POAs require a permanently running
daemon

Method invocations are relayed to the
active server

Registration of persistent servers in
the Implementation Repository

Mediator only replaces address
Information in object reference,
no storage required

Mico and the POA

POA fulfills its expectations:
well-specified, powerful, portable

The POA is an object adapter like any other

No modifications to the ORB
were necessary

Modification of the IDL Compiler and
Mediator

approx. 4000 lines of C++ source code

Shipped with Mico since 2.2.0

Documentation!

