A CORBA Language Mapping for Tcl

Frank Pilhofer
fp@ px. de

CORBA

De-facto standard for distributed systems

|deal for heterogeneous systems, independent of Hardware, Operating
System, Programming Language and Vendor

Open standard, documents freely available

Based on Client/Server model

Obiject-oriented

Processing a CORBA Request

Interface Description Language

interface Cal cul ator { .
doubl e calculate (in string expr);

H

Client code Server code

class Cal cul ator {
public nethod cal cul ate {expr} {

set calc "IOR...... "
return [expr $expr]

IDL Compiler

puts "[$calc calculate 1+1]" }
}
Typelnfo
Dynamic Stub _»_M_wwmﬂwwm\ ™ Dynamic Skeleton
GIOP !
- Server-Side ORB

Client-Side ORB -
<

CORBA Language Mapping

Maps IDL data types to target language types
— Simple data types (bool ean, short, | ong, doubl e,string,...)

— Complex data types (st r uct , sequence, any, ...)
Defines representation of client-side stubs
Representation of server-side skeletons

Official language mappings exist for C, C++, Java, Smalltalk, Ada, COBOL,
Python and IDLscript

Tcl Language Mapping - IDL Types
Most simple IDL types can be represented with native Tcl types

Other types (unsi gned | ong (32 bit), | ong | ong (64 bit), fi xed
(fixed-point decimal)) are mapped to Tcl strings

Complex types are mapped to Tcl lists, e.g. {f oo bar } matches
sequence<string>

Thanks to Tcl's lax type system, IDL data types blend in naturally and
Intuitively

Tcl Language Mapping - Client-Side Stubs

Stubs are mapped to Tcl procedures,
“handles”, that encapsulate object address
First argument is interpreted as operation
name, remaining aguments as parameters

. To Server

- - =

Type information is retrieved from the Interface Repository at runtime =
client side is fully dynamic

Open question: garbage collection of handles? (Core patch!)

Tcl Language Mapping - Server-Side Skeletons

Servants (instances of a Skeleton) have state, code and identity =-
servants are objects!

Consequently, skeletons are mapped to [INCR TCL] classes

The user extends the generic skeleton base class and implements an
Interface’s methods

Type information is retrieved from the Interface Repository at runtime =
server side is fully dynamic

Open questions: multiple inheritance, garbage collection?

Language Mapping Summary

IDL types must be mapped to native Tcl types and have an
Intuitive string representation

Stubs and skeletons should be fully dynamic, without requiring
compile-time information

Client side needs asynchrony features to keep the event loop
running (especially for seamless Tk integration)

Is garbage collection of handles/objects compulsory, or should
the mapping only rely on current Tcl/[incr Tcl] features?

Current State

e Combat/C++

— Tcl extension that hooks up to any CORBA 2.3 ORB

— Full Client- and Server-side solution

e Combat/Tcl
— Proof-of-concept version in pure Tcl
— Full Client-side implementation

— Ideal for heterogeneous environments, embedded devices or sandboxes

