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Abstract

The Software Communications Architecture (SCA),
a mandatory specification for Software Radio im-
plementations by the Joint Tactical Radio System
(JTRS), defines a Common Object Request Broker
Architecture (CORBA) based component model for
building portable applications in a heterogeneous
environment. The Object Management Group’s
(OMG) CORBA is an accepted architecture for
distributed systems that recently added a compo-
nent model to its suite of standards. The au-
thors’ effort in leveraging the strength of CORBA
by reusing OMG standards within the SCA, and
improving OMG standards to match JTRS expec-
tations, yields synergies that will broaden the vi-
sion of SCA as well as easing implementations
and improving scalability within the SCA frame-
work. A case study shows seamless integration of
FPGA components into an SCA application. The
Streaming Component Environment (SCE), a Mer-
cury product that provides this kind of flexibil-
ity within our current high-performance embedded
systems, is being extended to comply with the OMG
and SCA specifications.

1 Software Communications Ar-
chitecture

Today’s rapid pace of technological advances make
communication devices obsolete shortly after they
are produced. To keep up with this pace, communi-
cations systems must be designed to maximize the
transparent insertion of new technologies at virtu-

ally every phase of their lifecycles. When these
new technologies are inserted, the upgraded de-
vices should still be able to communicate with each
other and with legacy systems.

The term software defined radio was coined
in 1990s to overcome these problems. A soft-
ware defined radio is a communications device
whose functionality is defined in software. Defin-
ing the radio behavior in software lets one add new
functionality without hardware alterations during a
technology upgrade.

In order to maintain interoperability, the radio
systems must be built upon a well-defined, stan-
dardized, open architecture. Defining an architec-
ture also enhances scalability and provides plug-
and-play behavior for the components of a radio.

The Software Communications Architecture
(SCA) is an open architecture defined by the Joint
Tactical Radio System (JTRS) Joint Program Of-
fice (JPO). The SCA has been published to provide
a common open architecture that can be used to
build a family of radios across multiple domains.
The radios built upon SCA are interoperable, can
use a wide range of frequencies, and enable tech-
nology insertion. The SCA also supports software
reusability.

The SCA defines an Operating Environment
(OE) that will be used by JTRS radios. It also
specifies the services and interfaces that the appli-
cations use from the environment. The interfaces
are defined by using the Common Object Request
Broker Architecture (CORBA) Interface Definition
Language (IDL) and graphical representations are
made by using Unified Modeling Language (UML)
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Figure 1: SCA Framework

[1].

The OE consists of a Core Framework (CF), a
CORBA middleware and a POSIX-based Operat-
ing System (OS). The OS running the SCA must
provide services and interfaces that are defined as
mandatory in the Application Environment Profile
(AEP) of the SCA. The CF describes the interfaces,
their purposes and their operations. It provides an
abstraction of the underlying software and hard-
ware layers for software application developers.
An SCA compatible system must implement these
interfaces. The interfaces are grouped as Base Ap-
plication Interfaces, Framework Control Interfaces
and Framework Services Interfaces.

The CF uses a Domain Profile to describe the
components in the system. The Domain Profile is a
set of XML files that describe the identity, capabil-
ities, properties, inter-dependencies, and location
of the hardware devices and software components
that make up the system [2].

Although the SCA uses the CORBA middle-
ware for its software bus, the application layer can
reach the OS by other means. CORBA adapters
can be used to wrap the legacy software compo-
nents. Figure 1 shows the relationship between the
AEDP, the application and the OE.

2 SCA Issues

Application portability versus performance is a
common trade-off. SCA suffers the same di-
chotomy. The vendors implement waveforms

using Application Specific Integrated Circuits
(ASIC) and Field Programmable Gate Arrays
(FPGA) in their platforms and still be SCA com-
pliant with the help of CORBA adapters. This
approach hurts portability and results in platform
specific implementations. Waveforms expect a
lightweight component run-time environment that
is not yet commercially available.

SCA is currently out-of-synch with CORBA
Component Model (CCM) and services for embed-
ded environments. These specifications were not
ready when SCA was written but they do cover the
embedded profiles now and SCA can evolve by in-
cluding pointers to these specifications.

Neither CCM nor SCA addresses scalable
embedded multiprocessing (where a compo-
nent has a data-parallel implementation) or
reusable/interoperable wideband dataflow. By
defining extensions based on experience and work-
ing them through standards, reusable definitions
for Digital Signal Processor (DSP) and FPGA
codes, data parallel embedded computer support
and wideband interoperable dataflow can be made
a part of SCA [3].

In SCA, components are connected to each
other through ports. One of the main obstacles in
developing interoperable SCA applications is the
loose definition of ports in the specification. Com-
ponents can have provides and uses ports. The CF
creates component assemblies by connecting the
provides port of a component to the uses port of an-
other component. The communication model that
will be used after this connect operation is not de-
fined which could lead to interoperability problems
when connecting components from different ven-
dors.

Component implementation spanning proces-
sors can be supported by SCA by including Data
Parallel CORBA [7] features to the standard e.g.
partial objects and parallel servers. Striping, dis-
tributing and scattering streams across multiple
processors for streams from 1/O ports to processors
and among processors can be supported by allow-
ing alternative assemblies of components based on
QoS and hardware. Mercury’s leadership in devel-
oping the Data Parallel CORBA specification was
based on years of internal research and realized by
the proprietary middleware Streaming Component
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Figure 2: Mercury Component Centric Architec-
ture

Environment (SCE) that supports seamless inte-
gration of FPGA components into SCA compliant
systems using high-speed interconnects (see Fig-
ure 2).

3 Component Architectures

3.1 CORBA

CORBA [4] is an open, vendor-independent infras-
tructure for distributed computing, published by
the OMG, a consortium of more than 800 mem-
bers from industry and academia. CORBA is based
on the object oriented model; objects are imple-
mented in a server and can be addressed in a lo-
cation independent manner using opaque object
references. A declarative language, IDL, is used
to describe an object’s public interface. A lan-
guage specific compiler translates an IDL descrip-
tion into programming language constructs that
hide the potential remoteness from the developer.
In the C++ language, interfaces are translated into
classes. Remote objects appear as local proxy ob-
jects (“stubs”) that automatically send the request,

mediated by the Object Request Broker (ORB), to
the server. After processing, a reply is sent back
the same way. Object Request Brokers communi-
cate across hosts using the efficient General Inter-
ORB Protocol (GIOP) [6]. Within the same hosts,
ORBs may use other transports (like shared mem-
ory). If the target object exists in the same process,
the “remote” invocation is usually as efficient as a
virtual method call in C++. The standard proto-
col and the variety of standard language mappings
ensure cross-vendor and cross-language compati-
bility: Java clients easily interoperate with C++
Servers or vice versa.

In addition to CORBA, the OMG has defined
numerous add-on standards for common services
like the Naming, Event or Transaction service, tie-
ins like Secure Interoperability and Fault Toler-
ance, and also profiles for e.g. real-time systems.

3.2 CORBA Component Model

The CORBA architecture is based on a central-
ized approach to computing: requests are sent to a
server for processing, assuming monolithic, stand-
alone servers. This model is suitable for a wide
range of applications, including three-tier (Fron-
tend, Server, Database) architectures. However, it
does not fit modern peer-based architectures very
well, as it does not describe interaction between
servers on a peer to peer basis.

In 2000, the OMG adopted CCM [5] as an ex-
tension to the object model. CCM advocates a
concept in which components, in their IDL de-
scription, advertise ports. CCM defines interface
and event ports; a component can provide ports
(“facets”) or use ports (“receptacles”). A compo-
nent implements the interfaces of provided ports,
but at the same time it enables the component to
express dependencies on other interfaces that must
be supplied by other components. At deployment
time, when a component-based application is to be
executed, the various components are first instan-
tiated and then interconnected according to an as-
sembly description.

By avoiding the monolithic approach of central-
ized servers, CCM is more attractive to fine grained
distributed systems. In combination with the abil-
ity to assemble components into an application,



CCM better promotes code and component reuse:
the smaller components are, the better the chances
that they can be reused.

Small software components also promote paral-
lel programming; ideally, components will execute
in parallel, exchanging data and messages for syn-
chronization.

3.3 Lightweight CORBA

In the past, CORBA has been criticized for its
complexity; the size of existing ORB implementa-
tions made CORBA unattractive to embedded ap-
plications. The OMG addressed the issue with the
Minimum CORBA specification, but there was a
chicken and egg situation. Small ORBs are fea-
sible at the cost of a limited feature set, but as
long as there was no customer demand for small-
footprint, all vendors offered were full-featured,
large, ORBs.

This situation has changed. Tighter integration
of heterogeneous hardware in the same embedded
system created a demand for vendor-independent
standards like CORBA, instead of proprietary pro-
tocols. At the same time, loosened memory and
performance constraints closed the gap to low-
footprint ORBs that are now commercially avail-
able.

The authors are actively involved in tailoring
OMG specifications for the embedded domain.
This includes Lightweight Logging, Lightweight
Services and Lightweight CCM. The recently
adopted Lightweight Logging Service defines
a minimal-footprint logging service where dis-
tributed log messages are time stamped and
recorded for later retrieval. Lightweight Services is
a profile of the common Naming, Event and Time
services with the goal of removing redundant fea-
tures from the “full” services. For example, while
the original Event Service defines both push and
pull event models, Lightweight Services removes
the pull model.

Lightweight CCM also removes some of the
CORBA Component Model’s features that are re-
dundant or not required in the embedded domain,
such as support for persistency. It is anticipated
that the Lightweight CCM specification will en-
able CORBA components to be implemented with

as little footprint as current CORBA servers.

Initial submissions for the Lightweight Services
and Lightweight CCM have been received and are
currently being discussed within the OMG, adop-
tion is anticipated before the end of the year.

3.4 Deployment and Configuration of
Component-based Applications

A shortcoming in the current CCM is its lim-
ited facilities for assembly and deployment of
component-based applications. The authors are
working on a new add-on standard that will greatly
improve the situation. The submission is based on
several important concepts and features:

e Components can be implemented monolith-
ically, or by an assembly of interconnected
subcomponents.

e Multiple alternative implementations of the
same component can be packaged and dis-
tributed as a single file.

o Implementations describe their requirements.
These are matched against resources in the
target environment.

e Standard interfaces and data models ensure
interoperability across vendors.

The result will be a powerful specification that will
greatly enhance the CCM.

In the current CCM, assemblies are limited to
a single level of composition. Our specification
allows assemblies to be recursive. Rather than
having a separate identity, assemblies always im-
plement a concrete component interface, enabling
composition and decomposition at any level: com-
ponents can be glued together into an assembly, or
they can be transparently replaced by an assembly
that implements the same interface. In an assem-
bly, a component’s “surface features” (attributes
and ports) are mapped to attributes and ports of
subcomponents.

Allowing to package alternative implementa-
tions addresses the heterogeneity in a distributed
system. Distributors can then for example include
equivalent Linux, Windows and Java versions in



the same package; an implementation can then be
chosen based on the target environment and user
preferences.

A data model is introduced to model available
resources, such as basic features (e.g. CPU and
OS type), sharable but limited hardware (such as
CPU, Memory), non-sharable hardware (e.g. a mi-
crophone), and interconnect bandwidth. Mono-
lithic component implementations describe their
requirements, and assemblies describe the require-
ments of interconnections. During a “deployment
planning” process, concrete implementations are
selected among the alternatives so that resources
match or exceed requirements.

Interfaces are defined in IDL, data models are
defined in both IDL and XML to transport data be-
tween vendors both at runtime and offline (in files).
This allows for different parts of the infrastructure
to be supplied by different vendors.

In particular, hardware vendors can support their
specialty hardware by supplying only two pieces.
The first is a means to implement a component,
resulting in a component implementation that is
packaged according to the standard data models.
The deployment infrastructure treats component
implementations as opaque. They are just passed
to a well-defined entity in the target environment
that is responsible for instantiating a running com-
ponent from the implementation. This “node man-
ager” is the second piece that needs to be supplied
by the vendor. All the deployment infrastructure
needs to know about a component implementation
is described in well-defined XML files.

This allows for a wide range of concepts, from
on-demand compilation to scripted implementa-
tions to DSP code to VHDL code that is to be
loaded onto an FPGA.

The vision is that, by virtue of the Deployment
and Configuration specification, users need to ac-
quire only a single deployment infrastructure, plus
the (multiple) vendors’ development and execu-
tion chains for the hardware in their environment.
In combination with other features of the specifi-
cation, users are enabled to implement their dis-
tributed, component-based applications in a stan-
dard, vendor-independent way. The ability to in-
clude multiple implementations in a single pack-
age ensures portability, and the possibility to add

new pieces of accelerated hardware, to port only
the “hot components,” or to selectively decompose
components into finer-grained assemblies, allows
for present and future application scalability across
a wide range.

Using the OMG standard Model Driven Archi-
tecture (MDA) approach, the specification is ex-
pressed in terms of a Platform Independent Model
that does not rely on a concrete component model.
Instead, the model is then mapped into one or more
Platform Specific Models. So far, mappings for
both the CCM and the SCA are included.

A final candidate of the specification has been
submitted, adoption is anticipated before the end
of the year.

4 Next Generation SCA

The SCA predates the CCM, but its component
model of Resources that are interconnected via
ports is comparable. The SCA also defines some
other services that are not just relevant to the Soft-
ware Radio domain, but useful to embedded sys-
tems in general. Most notable is the logging ser-
vice; for the common naming and event services,
the SCA defines a subset in order to cut to size both
servers and clients.

This was one of the premises that started the
aforementioned “lightweight” CORBA specifica-
tions: the parts of the SCA that are not limited
to the Software Radio domain should be separated
into standards of their own. The SCA specification
can simply include pointers to the separated stan-
dards.

The authors expect several synergies from this
process. The SCA specification will become
smaller. SCA Core frameworks can then be im-
plemented and used with more existing, standard
pieces of software. On the other hand, CORBA
will benefit from stand-alone, lightweight services
for the embedded domain.

The specification about Deployment and Con-
figuration should make a special impact. The de-
ployment facilities that are defined by the SCA are
not well specified and a frequent cause for confu-
sion. Deployment “happens” by way of an Appli-
cation Factory, but the distribution of Resources



among Devices is largely undefined. The SCA is
also limited to a single level of composition.

The SCA mapping of the Deployment and Con-
figuration specification includes a much more pow-
erful deployment concept and defines clear bound-
aries between the core framework, the deployment
system, devices and the component implementa-
tion. When adopted into the SCA core frame-
work, the Deployment and Configuration specifi-
cation will enhance the SCA standard with its sup-
port of heterogeneous systems, FPGA and DSP
systems and the ability to transparently integrate
new hardware environments.

5 Streaming Component Environ-
ment

At Mercury Computer Systems, Inc., an enabling
technology called SCE is being developed based
on a combining of software and hardware compo-
nent architectures.

The SCE is a component based middleware that
utilizes CORBA for the control plane and an in-
house developed data plane. The key requirements
for the SCE technology are reuse, portability and
scalability while not significantly affecting perfor-
mance when compared with a hand-coded applica-
tion performing the same function. An additional
area of interest was the reduction in time to develop
an application using the SCE product.

The amount of reuse achievable in a component
system is dependent on two independent issues; the
first is the level of isolation between the component
and the underlying operating system or hardware
platform. Within SCE it was important to pro-
vide the maximum isolation and hence, the high-
est possibility for reuse. This has been achieved
by performing trampolining of functions from the
components and providing a dynamic loading and
linking approach that makes the components com-
pletely independent of the operating environment.
The second reuse issue is component granularity;
a component is only reusable if the functionality
that it provides is required by another application.
This issue can only be addressed as a learning les-
son. We have been reasonably successful in com-
ponentizing applications to maximize reuse of the

components.

Component portability is achieved by reducing
the number of system level dependencies. Also,
the infrastructure in which the component executes
must be easily ported. The SCE is a layered prod-
uct, in which components execute within a con-
tainer infrastructure. Once a container has been
ported to a given platform/processor, components
can be executed on that platform.

Given the complexity of some algorithms and
the size of data sets associated with these algo-
rithms, it is necessary to be able to distribute
the processing across more than one processor or
FPGA. To permit this, the SCE supports complex
data reorganization and distribution techniques. A
component is provided information about the seg-
ment of the data set present in a data payload. This
allows a component to be written in a manner that
is independent of the scaling of the algorithm.

The SCE supports a signaling mechanism that is
common between all of the supported devices, in-
cluding microprocessors, FPGAs and DSPs. All
data and signals are transferred concurrent with
processing; hence very high processor utilization
can be achieved.

The design of the SCE predates both SCA and
CCM. However, we are working on making the
SCE compatible with these standards, so that the
SCE can be used to build both SCA and CCM com-
patible applications.

6 FPGAs as Components

With the increasing adoption of component mod-
els for multi processing applications, especially in
complex areas such as communications systems,
the need to support unconventional processing re-
sources such as FPGA and adaptive logic devices
increases.

At Mercury, we have already demonstrated
seamless integration of FPGA-based hardware
components into SCE applications.

Software component architectures provide inter-
faces that facilitate communications between com-
ponents. This isolates the components from many
of the platform specific issues, allowing portabil-
ity at the cost of some level of performance. Given



the increases in processor performance, and the in-
creasing costs of software development, it is gen-
erally acceptable to lose some performance for in-
creases in reusability, and hence improvements in
time-to-market.

FPGA based computing is gathering pace in
some segments of the computing and processing
marketplaces, due to the high performance that can
be achieved for some types of algorithms com-
pared to software based implementations. Unfortu-
nately, the majority of current systems adopt one of
two approaches to integrating FPGA devices into a
heterogeneous system. The first approach closely
couples an FPGA device to a more conventional
general-purpose processor (GPP) that is responsi-
ble for interfacing with a system via a software
component system and the FPGA performs com-
putation on the data sets. This approach is expen-
sive, given the need for a GPP for each FPGA, and
has performance issues due to the communication
required between the two. A second approach is to
treat the FPGA as a device requiring a proprietary
device driver running on a GPP that is responsible
for controlling the FPGA data flow.

There are both advantages and disadvantages to
any attempt to integrate an FPGA into a compo-
nent architecture. As with any component archi-
tecture, there can be significant benefits in the abil-
ity to reuse the component. This would be true
for FPGA based component architectures. Any in-
frastructure necessary to implement the component
architecture will consume resources on the FPGA
device itself. This is an area that requires careful
consideration, as the resources available on a given
device are limited.

To maximize the reuse of an FPGA compo-
nent, it is necessary to remove platform specific
implementation details from the component itself
through the use of well-defined interfaces. These
platform specific details include memory con-
troller physical, bus interface, DMA controller and
I/0 port implementations. If this can be achieved,
the FPGA component can be ported to any FPGA
device meeting the requirements for the compo-
nent that provides matched interfaces for the ab-
stracted functionality.

The benefits of a standard set of interfaces for
internal FPGA facilities is significant from a tech-

nical point of view, however the business view may
not be seen as so compelling. The ability to pur-
chase off the shelf FPGA components that com-
ply with standard interfaces permits the develop-
ment of products with reduced in-house skill sets.
It also provides a secondary market opportunity for
in-house developed cores, allowing those cores to
be sold externally. The standardization of the inter-
faces also permits FPGA board vendors to provide
a framework that supports the interfaces, allowing
integration of FPGA boards into existing compo-
nent architectures.

To achieve a truly flexible component based in-
frastructure, it is necessary to provide a scheme
that allows the transfer of data payloads and state
signaling. With this additional functionality, it is
possible to integrate software and hardware com-
ponents together in a heterogeneous system. To
achieve this it is necessary to provide interfaces to
an FPGA component that indicates the availability
of data payloads, and allows the FPGA component
to indicate that data payloads have been processed
and new output payloads have been created.

7 Conclusion

The existing SCA standard supporting waveform
interoperability was described. In the next gener-
ation SCA, the platform independent and domain
specific portions of the specification are segmented
into OMG standards providing greater commercial
implementation opportunity. With the advantage
of hindsight, refactoring the existing SCA specifi-
cation and input from the commercial and military
sector, SCA revisions are addressing key scalable
embedded processing issues e.g. interchangeabil-
ity of software and heterogeneous hardware com-
ponents, high performance interprocessor commu-
nication, lighter weight CORBA -related specifica-
tions and support for low-level embedded stan-
dards and parallel objects, making the SCA devel-
opment process more transparent to the waveform
developer. This specification work is further val-
idated with a testbed demonstrating internal SCA
multiprocessing research with respect to the het-
erogeneous component SCA/SCE middleware and
sample waveforms. The evolution of this next gen-



eration SCA middleware will be demonstrated in
MILCOM [8] in October.
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