
MicoCCM Tools Manual

Frank Pilhofer

April 2002

Abstract

This document describes the tools that come with the MicoCCM distribution. Their usage and options
are documented.

Contents

1 mico-ccm 2

2 mico-ccmd 2

3 ccmload 3

4 componentserver 4

1



1 mico-ccm

1.1 Synopsis

mico-ccm [<options>] <file>

1.2 Description

mico-ccm is the C++ code generator for CORBA Components, similar to idl. It reads an IDL file and
generates C++ code that must be compiled and linked with your component in addition to the output of the
idl tool. idl generates stubs and marshalling code, mico-ccm generates component-specific skeletons
that interface between the component implementation and the container.

Two output files are generated, a C++ header file and C++ code file. The base names of the output files
are the base name of the IDL file plus the string _ccm.

1.3 Options

--session Generates code for session components (default).

--service Generates code for service components.

--monolithic Generates code for components that use the monolithic implementation strategy (de-
fault).

--locator Generates code for components that use the locator strategy.

--standalone Generates a main function, so that the component(s) can be linked into a standalone
executable rather than into a loadable shared library. If this executable is executed, then it registers
all homes in the Naming Service, using the home’s name as the name of the binding. If the name
of a home is given as a parameter, then only this home is deployed. In that case, the options --
ior <filename> and --ns <nsname> are accepted to write that home’s IOR to a file or to
bind it into the Naming Service.

In addition, mico-ccm also accepts the options -I, -D, --c++-suffix, --hh-suffix and --name
with the same meaning as idl.

2 mico-ccmd

2.1 Synopsis

mico-ccmd [<options>]

2.2 Description

mico-ccmd is the Mico CCM Daemon. Its purpose is to manage component installations and deployed
components on a single host, and it needs to run on each host where you want to deploy components.1

mico-ccmd implements the standard ComponentInstallation, AssemblyFactory and ServerActivator in-
terfaces.

Via the ComponentInstallation interface, component implementations can be installed on the host
where mico-ccmd is running. Via the AssemblyFactory and ServerActivator interfaces, assemblies and
component servers can be started on demand - for these, mico-ccmd requires the separate assembly and

1Except standalone components (where the --standalone option of mico-ccm was used). mico-ccmd is not required to
run standalone components.

2



componentserver tools.2 These tools need to be in the search path so that mico-ccmd can execute
them.

The deployment tool contacts mico-ccmd to first upload component implementations and then to
start up componentservers to host the components as required.

mico-ccmd is a daemon that normally runs in perpetuity the background and that does not do any-
thing visible. If signalled to exit (via SIGINT, usually Ctrl-C), then it in turn signals all assemblies and
component servers to exit. Before finally exiting, it removes all component implementations that have been
installed.

2.3 Options

--root <pkgdir> Gives the path name of a directory where installed component implementations are
to be stored. Without this option, component implementations are stored in the current directory.3

--ior <filename> Stores the stringified object reference of the MicoCCM Daemon in the given file.
If a single hyphen is given as file name, then the object reference is written to standard output.

-v Verbosity. Status messages, such as about the starting and stopping of component servers will be
written to standard output.

The standard option of the Mico ORB -ORBIIOPAddr can be used to assign a specific port and interface
to bind to, as in -ORBIIOPAddr inet::1234. Note that an object URL to mico-ccmd can be
constructed easily if it is running on a known port. mico-ccmd uses an Object Key of MicoCCMD, so the
complete object URL is

corbaloc::<host>:<port>/MicoCCMD

where host and port are the known host name and port number where mico-ccmd is running.

3 ccmload

3.1 Synopsis

ccmload [<options>] <home name> <library file>

3.2 Description

ccmload is a simple deployment tool that can deploy a single component (more specifically, a single
home). ccmload contacts a running MicoCCM Daemon (mico-ccmd) to create a new component server
to host the new component, causes the home home name from the shared library library file to be
loaded into the container, and then optionally registers the home in the Naming Service. home name
must be the absolute name of the home that is to be deployed, and library file must be the file name
of a shared library that contains the implementation for home name. Note that ccmload does not upload
this implemenation; the file name must be valid in the context of the MicoCCM Daemon.

3.3 Options

--ccmd <IOR> Gives the object reference of the MicoCCM Daemon.

--host <host>[:port] This is an alternate possibility to specify the address of the MicoCCM Dae-
mon by host name and port number. If the port number is not given, then port 1234 is assumed.

2The componentserver tool is part of MicoCCM, the assembly tool is distributed as part of the MicoCCM Assembly and
Deployment Toolkit.

3Note that mico-ccmd refuses to overwrite existing files, so if you run, e.g. during testing, mico-ccm in the same directory
where the component resides that is to be deployed, then an error will be reported because of this.

3



--ns <name> Registers the deployed home in the Naming Service.

--ior <filename> Writes the object reference of the deployed home into the given file, or to standard
output if a single hyphen is given as file name.

-v Causes some some status messages to be printed during deployment.

4 componentserver

4.1 Synopsis

componentserver [<options>]

4.2 Description

An instance of the componentserver provides the runtime environment for one or more homes and
components. It implements the ComponentServer and Container interfaces and is able to load components
from shared libraries. componentserver is usually not started manually, new instances are spawned
by mico-ccmd on demand.

There are no command-line options to load shared libraries; this is done via the install_home
method of the Container interface.

4.3 Options

--ccmd <IOR> Gives the object reference of the MicoCCM Daemon.

--token <string> Assings a name to this componentserver instance. This is required for communi-
cation with the MicoCCM Daemon, but not necessary for freestanding instances.

--root <pkgdir> Containers will search this directory for component implementations.

--ior <filename> Writes the object reference of the ComponentServer into the given file, or to stan-
dard output if a single hyphen is given as file name.

-v Causes some status messages to be printed.

4


